Sur la systole de la sphère au voisinage de la métrique standard

We study the systolic area (defined as the ratio of the area over the square of the systole) of the $2$-sphere endowed with a smooth riemannian metric as a function of this metric. This function, bounded from below by a positive constant over the space of metrics, have the standard metric $g_0$ for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2007-01, Vol.121 (1), p.61-71
1. Verfasser: Balacheff, Florent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the systolic area (defined as the ratio of the area over the square of the systole) of the $2$-sphere endowed with a smooth riemannian metric as a function of this metric. This function, bounded from below by a positive constant over the space of metrics, have the standard metric $g_0$ for critic point, although this one do not achieve the conjectured global minimum : we show that for each tangent direction to the space of metrics at $g_0$, there exists a variation by metrics corresponding to this direction along which the systolic area can only increase
ISSN:0046-5755
1572-9168
DOI:10.1007/s10711-006-9087-7