Arctic octahedron in three-dimensional rhombus tilings and related integer solid partitions
Three-dimensional integer partitions provide a convenient representation of codimension-one three-dimensional random rhombus tilings. Calculating the entropy for such a model is a notoriously difficult problem. We apply transition matrix Monte Carlo simulations to evaluate their entropy with high pr...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2002, Vol.109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional integer partitions provide a convenient representation of codimension-one three-dimensional random rhombus tilings. Calculating the entropy for such a model is a notoriously difficult problem. We apply transition matrix Monte Carlo simulations to evaluate their entropy with high precision. We consider both free- and fixed-boundary tilings. Our results suggest that the ratio of free- and fixed-boundary entropies is $\\sigma_{free}/\\sigma_{fixed}=3/2$, and can be interpreted as the ratio of the volumes of two simple, nested, polyhedra. This finding supports a conjecture by Linde, Moore and Nordahl concerning the ''arctic octahedron phenomenon\'\' in three-dimensional random tilings. |
---|---|
ISSN: | 0022-4715 1572-9613 |
DOI: | 10.1023/A:1020464224385 |