Hardy spaces and divergence operators on strongly Lipschitz domains in $R^n
Let $\\Omega$ be a strongly Lipschitz domain of $\\reel^n$. Consider an elliptic second order divergence operator $L$ (including a boundary condition on $\\partial\\Omega$) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function $f$ via the Poisson sem...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2003-06, Vol.201,No.1, p.148-184 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\\Omega$ be a strongly Lipschitz domain of $\\reel^n$. Consider an elliptic second order divergence operator $L$ (including a boundary condition on $\\partial\\Omega$) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function $f$ via the Poisson semigroup for $L$ to be in$L^1$. Under suitable assumptions on $L$, we identify this maximal Hardy space with atomic Hardy spaces, namely with $H^1(\\reel^n)$ if $\\Omega=\\reel^n$, $H^{1}_{r}(\\Omega)$ under the Dirichlet boundary condition, and $H^{1}_{z}(\\Omega)$ under the Neumann boundary condition. In particular, we obtain a new proof of the atomic decomposition for $H^{1}_{z}(\\Omega)$. A version for local Hardy spaces is also given. We also present an overview of the theory of Hardy spaces and BMO spaces on Lipschitz domains with proofs. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/S0022-1236(03)00059-4 |