Hardy spaces and divergence operators on strongly Lipschitz domains in $R^n

Let $\\Omega$ be a strongly Lipschitz domain of $\\reel^n$. Consider an elliptic second order divergence operator $L$ (including a boundary condition on $\\partial\\Omega$) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function $f$ via the Poisson sem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2003-06, Vol.201,No.1, p.148-184
Hauptverfasser: Auscher, P., Russ, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\\Omega$ be a strongly Lipschitz domain of $\\reel^n$. Consider an elliptic second order divergence operator $L$ (including a boundary condition on $\\partial\\Omega$) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function $f$ via the Poisson semigroup for $L$ to be in$L^1$. Under suitable assumptions on $L$, we identify this maximal Hardy space with atomic Hardy spaces, namely with $H^1(\\reel^n)$ if $\\Omega=\\reel^n$, $H^{1}_{r}(\\Omega)$ under the Dirichlet boundary condition, and $H^{1}_{z}(\\Omega)$ under the Neumann boundary condition. In particular, we obtain a new proof of the atomic decomposition for $H^{1}_{z}(\\Omega)$. A version for local Hardy spaces is also given. We also present an overview of the theory of Hardy spaces and BMO spaces on Lipschitz domains with proofs.
ISSN:0022-1236
1096-0783
DOI:10.1016/S0022-1236(03)00059-4