The theorem of the complement for sub-Pfaffian sets

Let R be an o-minimal expansion of the real field, and let P(R) be its Pfaffian closure. Let L be the language consisting of all Rolle leaves added to R to obtain P(R). We prove that P(R) is model complete in the language L, provided that R admits analytic cell decomposition. We do this by proving a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Duke mathematical journal 2010, Vol.155 (1), p.35-90
Hauptverfasser: Lion, Jean-Marie, Speissegger, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be an o-minimal expansion of the real field, and let P(R) be its Pfaffian closure. Let L be the language consisting of all Rolle leaves added to R to obtain P(R). We prove that P(R) is model complete in the language L, provided that R admits analytic cell decomposition. We do this by proving a somewhat stronger statement, the theorem of the complement for nested sub-Pfaffian sets over R. As a corollary, we obtain that P(R) is obtained by adding to R all nested Rolle leaves over R, a one-stage process.
ISSN:0012-7094
1547-7398