Chemical reactivity indexes in density functional theory

The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 1999-01, Vol.20 (1), p.129-154
1. Verfasser: Chermette, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 129
container_title Journal of computational chemistry
container_volume 20
creator Chermette, H.
description The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used mostly within semiempirical MO methods, Hartree–Fock, or post‐Hartree–Fock methods. During the last decade, however, DFT has enabled theoretical chemistry to predict accurately structures and energetics of clusters and molecules. Therefore, more attention should also now be paid to these reactivity descriptors determined directly from DFT calculations. In this work, chemical reactivity is explored in DFT through a functional Taylor expansion of energy that introduces various energy derivatives of chemical significance. This review summarizes their main features and examines the limitations of some indexes presently used for the characterization of reactivity. Also, several perspectives are given. © 1999 John Wiley & Sons, Inc. J Comput Chem 20: 129–154, 1999
doi_str_mv 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
format Article
fullrecord <record><control><sourceid>istex_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00006867v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_LLPR2T6R_M</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3673-1f8998cede09abaafed11aab8e7d11a753d0a5b61f7a972773878b61d5dec5eb3</originalsourceid><addsrcrecordid>eNqFkNFOwjAUhhujiYi-A5dwMexp3dqi0SxTATPFIAbuTsrWhSkwsyHC29s55UYTr0779z9f0o-QK6BtoJSdNp_6Qb8FVHmOkmLSBKUUBXBbjHbgApjqdPz-tXMXBMAveZu2g8E5c_w9Utvt7JMaBcUc6blwSI6K4oVSyl3vrEZkMDOLNNLzRm50tErX6WrbSJex2ZjCzkZslkUZJe9L-5otbXE1M1m-PSYHiZ4X5uR71snz7c0o6DnhoNsP_NCJuCe4A4lUSkYmNlTpqdaJiQG0nkojyoNweUy1O_UgEVoJJgSXQtpr7MYmcs2U10mr4s70HN_ydKHzLWY6xZ4fYpnZr1BPemINtjuuulGeFUVukt0CUCxlIpYysRSDpRj8kYnMFtDKRLQy8UsmcqQYDJChb8mTivyRzs32F_Zf6l_QKrBop0Knxcpsdmidv6IVKFwcP3QxDB-HbOQN8Z5_Alnbl20</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chemical reactivity indexes in density functional theory</title><source>Wiley Online Library All Journals</source><creator>Chermette, H.</creator><creatorcontrib>Chermette, H.</creatorcontrib><description>The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used mostly within semiempirical MO methods, Hartree–Fock, or post‐Hartree–Fock methods. During the last decade, however, DFT has enabled theoretical chemistry to predict accurately structures and energetics of clusters and molecules. Therefore, more attention should also now be paid to these reactivity descriptors determined directly from DFT calculations. In this work, chemical reactivity is explored in DFT through a functional Taylor expansion of energy that introduces various energy derivatives of chemical significance. This review summarizes their main features and examines the limitations of some indexes presently used for the characterization of reactivity. Also, several perspectives are given. © 1999 John Wiley &amp; Sons, Inc. J Comput Chem 20: 129–154, 1999</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/(SICI)1096-987X(19990115)20:1&lt;129::AID-JCC13&gt;3.0.CO;2-A</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Catalysis ; Chemical Sciences ; density functional theory (DFT) ; electronegativity ; hardness ; response functions ; softness ; theoretical chemistry</subject><ispartof>Journal of computational chemistry, 1999-01, Vol.20 (1), p.129-154</ispartof><rights>Copyright © 1999 John Wiley &amp; Sons, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3673-1f8998cede09abaafed11aab8e7d11a753d0a5b61f7a972773878b61d5dec5eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291096-987X%2819990115%2920%3A1%3C129%3A%3AAID-JCC13%3E3.0.CO%3B2-A$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291096-987X%2819990115%2920%3A1%3C129%3A%3AAID-JCC13%3E3.0.CO%3B2-A$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00006867$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chermette, H.</creatorcontrib><title>Chemical reactivity indexes in density functional theory</title><title>Journal of computational chemistry</title><addtitle>J. Comput. Chem</addtitle><description>The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used mostly within semiempirical MO methods, Hartree–Fock, or post‐Hartree–Fock methods. During the last decade, however, DFT has enabled theoretical chemistry to predict accurately structures and energetics of clusters and molecules. Therefore, more attention should also now be paid to these reactivity descriptors determined directly from DFT calculations. In this work, chemical reactivity is explored in DFT through a functional Taylor expansion of energy that introduces various energy derivatives of chemical significance. This review summarizes their main features and examines the limitations of some indexes presently used for the characterization of reactivity. Also, several perspectives are given. © 1999 John Wiley &amp; Sons, Inc. J Comput Chem 20: 129–154, 1999</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>density functional theory (DFT)</subject><subject>electronegativity</subject><subject>hardness</subject><subject>response functions</subject><subject>softness</subject><subject>theoretical chemistry</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqFkNFOwjAUhhujiYi-A5dwMexp3dqi0SxTATPFIAbuTsrWhSkwsyHC29s55UYTr0779z9f0o-QK6BtoJSdNp_6Qb8FVHmOkmLSBKUUBXBbjHbgApjqdPz-tXMXBMAveZu2g8E5c_w9Utvt7JMaBcUc6blwSI6K4oVSyl3vrEZkMDOLNNLzRm50tErX6WrbSJex2ZjCzkZslkUZJe9L-5otbXE1M1m-PSYHiZ4X5uR71snz7c0o6DnhoNsP_NCJuCe4A4lUSkYmNlTpqdaJiQG0nkojyoNweUy1O_UgEVoJJgSXQtpr7MYmcs2U10mr4s70HN_ydKHzLWY6xZ4fYpnZr1BPemINtjuuulGeFUVukt0CUCxlIpYysRSDpRj8kYnMFtDKRLQy8UsmcqQYDJChb8mTivyRzs32F_Zf6l_QKrBop0Knxcpsdmidv6IVKFwcP3QxDB-HbOQN8Z5_Alnbl20</recordid><startdate>19990115</startdate><enddate>19990115</enddate><creator>Chermette, H.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>19990115</creationdate><title>Chemical reactivity indexes in density functional theory</title><author>Chermette, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3673-1f8998cede09abaafed11aab8e7d11a753d0a5b61f7a972773878b61d5dec5eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>density functional theory (DFT)</topic><topic>electronegativity</topic><topic>hardness</topic><topic>response functions</topic><topic>softness</topic><topic>theoretical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chermette, H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chermette, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical reactivity indexes in density functional theory</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J. Comput. Chem</addtitle><date>1999-01-15</date><risdate>1999</risdate><volume>20</volume><issue>1</issue><spage>129</spage><epage>154</epage><pages>129-154</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used mostly within semiempirical MO methods, Hartree–Fock, or post‐Hartree–Fock methods. During the last decade, however, DFT has enabled theoretical chemistry to predict accurately structures and energetics of clusters and molecules. Therefore, more attention should also now be paid to these reactivity descriptors determined directly from DFT calculations. In this work, chemical reactivity is explored in DFT through a functional Taylor expansion of energy that introduces various energy derivatives of chemical significance. This review summarizes their main features and examines the limitations of some indexes presently used for the characterization of reactivity. Also, several perspectives are given. © 1999 John Wiley &amp; Sons, Inc. J Comput Chem 20: 129–154, 1999</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/(SICI)1096-987X(19990115)20:1&lt;129::AID-JCC13&gt;3.0.CO;2-A</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 1999-01, Vol.20 (1), p.129-154
issn 0192-8651
1096-987X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00006867v1
source Wiley Online Library All Journals
subjects Catalysis
Chemical Sciences
density functional theory (DFT)
electronegativity
hardness
response functions
softness
theoretical chemistry
title Chemical reactivity indexes in density functional theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20reactivity%20indexes%20in%20density%20functional%20theory&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Chermette,%20H.&rft.date=1999-01-15&rft.volume=20&rft.issue=1&rft.spage=129&rft.epage=154&rft.pages=129-154&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/(SICI)1096-987X(19990115)20:1%3C129::AID-JCC13%3E3.0.CO;2-A&rft_dat=%3Cistex_hal_p%3Eark_67375_WNG_LLPR2T6R_M%3C/istex_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true