Chemical reactivity indexes in density functional theory
The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used...
Gespeichert in:
Veröffentlicht in: | Journal of computational chemistry 1999-01, Vol.20 (1), p.129-154 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theoretical description of charge distribution, and related properties, such as chemical reactivity descriptors of chemical compounds, has greatly benefited from the development of density functional theory (DFT) methods. Indeed, most concepts stemmed from DFT but, up to now, they have been used mostly within semiempirical MO methods, Hartree–Fock, or post‐Hartree–Fock methods. During the last decade, however, DFT has enabled theoretical chemistry to predict accurately structures and energetics of clusters and molecules. Therefore, more attention should also now be paid to these reactivity descriptors determined directly from DFT calculations. In this work, chemical reactivity is explored in DFT through a functional Taylor expansion of energy that introduces various energy derivatives of chemical significance. This review summarizes their main features and examines the limitations of some indexes presently used for the characterization of reactivity. Also, several perspectives are given. © 1999 John Wiley & Sons, Inc. J Comput Chem 20: 129–154, 1999 |
---|---|
ISSN: | 0192-8651 1096-987X |
DOI: | 10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A |