Sur la forme de la boule unité de la norme stable unidimensionnelle
For a Riemannian polyhedra, we study the geometry of the unit ball for the unidimensional stable norm (stable ball). In the case of a unidimensional Riemannian polyhedra (graph), we show that the stable ball is a polytope whose vertices are completely described by combinatorial properties of the gra...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2006-03, Vol.119 (3), p.347-358 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a Riemannian polyhedra, we study the geometry of the unit ball for the unidimensional stable norm (stable ball). In the case of a unidimensional Riemannian polyhedra (graph), we show that the stable ball is a polytope whose vertices are completely described by combinatorial properties of the graph. We study then the realizable forms as stable ball of Riemannan manifolds of dimension larger than three. For a Riemannian manifold $(M, g)$ fixed, we show that a broad class of polytopes can appear as stable ball of metrics in the conformal class of $g$. We use for that a polyhedral technique. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-005-0622-x |