Sur la forme de la boule unité de la norme stable unidimensionnelle

For a Riemannian polyhedra, we study the geometry of the unit ball for the unidimensional stable norm (stable ball). In the case of a unidimensional Riemannian polyhedra (graph), we show that the stable ball is a polytope whose vertices are completely described by combinatorial properties of the gra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2006-03, Vol.119 (3), p.347-358
Hauptverfasser: Babenko, Ivan, Balacheff, Florent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a Riemannian polyhedra, we study the geometry of the unit ball for the unidimensional stable norm (stable ball). In the case of a unidimensional Riemannian polyhedra (graph), we show that the stable ball is a polytope whose vertices are completely described by combinatorial properties of the graph. We study then the realizable forms as stable ball of Riemannan manifolds of dimension larger than three. For a Riemannian manifold $(M, g)$ fixed, we show that a broad class of polytopes can appear as stable ball of metrics in the conformal class of $g$. We use for that a polyhedral technique.
ISSN:0025-2611
1432-1785
DOI:10.1007/s00229-005-0622-x