Equational compactness of bi-frames and projection algebras

We generalize D. Kelly's and K.A. Nauryzbaev's results of 1-variable and 2-variable equational compactness of complete distributive lattices satisfying the infinite distributive law and its dual ("bi-frames") to objects similar to monadic algebras (which we will call projection a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra universalis 1995-12, Vol.33 (4), p.478-515
1. Verfasser: Wehrung, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize D. Kelly's and K.A. Nauryzbaev's results of 1-variable and 2-variable equational compactness of complete distributive lattices satisfying the infinite distributive law and its dual ("bi-frames") to objects similar to monadic algebras (which we will call projection algebras). This will lead us to an example of bi-frame that is not 3-variable equationally compact, even for countable equation systems, thus solving a problem posed in 1978 by G. Grätzer. This example is realized as a certain complete sublattice of the complete Boolean algebra of regular open subsets of some Polish space.
ISSN:0002-5240
1420-8911
DOI:10.1007/BF01225471