Equational compactness of bi-frames and projection algebras
We generalize D. Kelly's and K.A. Nauryzbaev's results of 1-variable and 2-variable equational compactness of complete distributive lattices satisfying the infinite distributive law and its dual ("bi-frames") to objects similar to monadic algebras (which we will call projection a...
Gespeichert in:
Veröffentlicht in: | Algebra universalis 1995-12, Vol.33 (4), p.478-515 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize D. Kelly's and K.A. Nauryzbaev's results of 1-variable and 2-variable equational compactness of complete distributive lattices satisfying the infinite distributive law and its dual ("bi-frames") to objects similar to monadic algebras (which we will call projection algebras). This will lead us to an example of bi-frame that is not 3-variable equationally compact, even for countable equation systems, thus solving a problem posed in 1978 by G. Grätzer. This example is realized as a certain complete sublattice of the complete Boolean algebra of regular open subsets of some Polish space. |
---|---|
ISSN: | 0002-5240 1420-8911 |
DOI: | 10.1007/BF01225471 |