Flip dynamics in octagonal rhombus tiling sets
We investigate the properties of classical single flip dynamics in sets of two-dimensional random rhombus tilings. Single flips are local moves involving 3 tiles which sample the tiling sets via Monte Carlo Markov chains. We determine the ergodic times of these dynamical systems (at infinite tempera...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2002-01, Vol.88 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the properties of classical single flip dynamics in sets of two-dimensional random rhombus tilings. Single flips are local moves involving 3 tiles which sample the tiling sets via Monte Carlo Markov chains. We determine the ergodic times of these dynamical systems (at infinite temperature): they grow with the system size N_T like Cst. N_T^2 ln N_T; these dynamics are rapidly mixing. We use an inherent symmetry of tiling sets and a powerful tool from probability theory, the coupling technique. We also point out the interesting occurrence of Gumbel distributions. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevB.88.030601 |