Flip dynamics in octagonal rhombus tiling sets

We investigate the properties of classical single flip dynamics in sets of two-dimensional random rhombus tilings. Single flips are local moves involving 3 tiles which sample the tiling sets via Monte Carlo Markov chains. We determine the ergodic times of these dynamical systems (at infinite tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2002-01, Vol.88
1. Verfasser: Destainville, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the properties of classical single flip dynamics in sets of two-dimensional random rhombus tilings. Single flips are local moves involving 3 tiles which sample the tiling sets via Monte Carlo Markov chains. We determine the ergodic times of these dynamical systems (at infinite temperature): they grow with the system size N_T like Cst. N_T^2 ln N_T; these dynamics are rapidly mixing. We use an inherent symmetry of tiling sets and a powerful tool from probability theory, the coupling technique. We also point out the interesting occurrence of Gumbel distributions.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevB.88.030601