Topological correlations in trivial knots: new arguments in support of the crumpled polymer globule

We prove the fractal crumpled structure of collapsed unknotted polymer ring. In this state the polymer chain forms a system of densely packed folds, mutually separated in all scales. The proof is based on the numerical and analytical investigation of topological correlations in randomly generated de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2003, Vol.134, p.142-159
Hauptverfasser: Vasilyev, Oleg A., Nechaev, Sergei K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the fractal crumpled structure of collapsed unknotted polymer ring. In this state the polymer chain forms a system of densely packed folds, mutually separated in all scales. The proof is based on the numerical and analytical investigation of topological correlations in randomly generated dense knots on strips $L_{v} \times L_{h}$ of widths $L_{v}=3,5$. We have analyzed the conditional probability of the fact that a part of an unknotted chain is also almost unknotted. The complexity of dense knots and quasi--knots is characterized by the power $n$ of the Jones--Kauffman polynomial invariant. It is shown, that for long strips $L_{h} \gg L_{v}$ the knot complexity $n$ is proportional to the length of the strip $L_{h}$. At the same time, the typical complexity of the quasi--knot which is a part of trivial knot behaves as $n\sim \sqrt{L_{h}}$ and hence is significantly smaller. Obtained results show that topological state of any part of the trivial knot in a collapsed phase is almost trivial.
ISSN:0040-5779