Half-integer shapiro steps at the 0-π crossover of a ferromagnetic Josephson Junction
We investigate the current-phase relation of S/F/S junctions near the crossover between the 0 and the pi ground states. We use Nb/CuNi/Nb junctions where this crossover is driven both by thickness and temperature. For a certain thickness a nonzero minimum of critical current is observed at the cross...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2004-06, Vol.92 (25), p.257005.1-257005.4, Article 257005 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the current-phase relation of S/F/S junctions near the crossover between the 0 and the pi ground states. We use Nb/CuNi/Nb junctions where this crossover is driven both by thickness and temperature. For a certain thickness a nonzero minimum of critical current is observed at the crossover temperature. We analyze this residual supercurrent by applying a high frequency excitation and observe the formation of half-integer Shapiro steps. We attribute these fractional steps to a doubling of the Josephson frequency due to a sin((2phi) current-phase relation. This phase dependence is explained by the splitting of the energy levels in the ferromagnetic exchange field. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.92.257005 |