Isometry-invariant geodesics and the fundamental group

We prove that on closed Riemannian manifolds with infinite abelian, but not cyclic, fundamental group, any isometry that is homotopic to the identity possesses infinitely many invariant geodesics. We conjecture that the result remains true if the fundamental group is infinite cyclic. We also formula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2015-06, Vol.362 (1-2), p.265-280
1. Verfasser: Mazzucchelli, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove that on closed Riemannian manifolds with infinite abelian, but not cyclic, fundamental group, any isometry that is homotopic to the identity possesses infinitely many invariant geodesics. We conjecture that the result remains true if the fundamental group is infinite cyclic. We also formulate a generalization of the isometry-invariant geodesics problem, and a generalization of the celebrated Weinstein conjecture: on a closed contact manifold with a selected contact form, any strict contactomorphism that is contact-isotopic to the identity possesses an invariant Reeb orbit.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-014-1113-8