Isometry-invariant geodesics and the fundamental group
We prove that on closed Riemannian manifolds with infinite abelian, but not cyclic, fundamental group, any isometry that is homotopic to the identity possesses infinitely many invariant geodesics. We conjecture that the result remains true if the fundamental group is infinite cyclic. We also formula...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2015-06, Vol.362 (1-2), p.265-280 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that on closed Riemannian manifolds with infinite abelian, but not cyclic, fundamental group, any isometry that is homotopic to the identity possesses infinitely many invariant geodesics. We conjecture that the result remains true if the fundamental group is infinite cyclic. We also formulate a generalization of the isometry-invariant geodesics problem, and a generalization of the celebrated Weinstein conjecture: on a closed contact manifold with a selected contact form, any strict contactomorphism that is contact-isotopic to the identity possesses an invariant Reeb orbit. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-014-1113-8 |