Lipschitz Regularity for Elliptic Equations with Random Coefficients

We develop a higher regularity theory for general quasilinear elliptic equations and systems in divergence form with random coefficients. The main result is a large-scale L ∞ -type estimate for the gradient of a solution. The estimate is proved with optimal stochastic integrability under a one-param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2016, Vol.219 (1), p.255-348
Hauptverfasser: Armstrong, Scott N., Mourrat, Jean-Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a higher regularity theory for general quasilinear elliptic equations and systems in divergence form with random coefficients. The main result is a large-scale L ∞ -type estimate for the gradient of a solution. The estimate is proved with optimal stochastic integrability under a one-parameter family of mixing assumptions, allowing for very weak mixing with non-integrable correlations to very strong mixing (for example finite range of dependence). We also prove a quenched L 2 estimate for the error in homogenization of Dirichlet problems. The approach is based on subadditive arguments which rely on a variational formulation of general quasilinear divergence-form equations.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-015-0908-4