The set of realizations of a max-plus linear sequence is semi-polyhedral

We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 2011-07, Vol.77 (4), p.820-833
Hauptverfasser: Blondel, Vincent, Gaubert, Stéphane, Portier, Natacha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived from general facts on rational expressions over idempotent commutative semirings: we show more generally that the set of values of the coefficients of a commutative rational expression in one letter that yield a given max-plus linear sequence is a finite union of polyhedral sets.
ISSN:0022-0000
1090-2724
DOI:10.1016/j.jcss.2010.08.010