A Robust Monolithic Approach for Resin Infusion Based Process Modelling

The aim of this work is to focus on the Stokes-Darcy coupled problem in order to propose a robust monolithic approach to simulate composite manufacturing process based on liquid resin infusion. The computational domain can be divided into two non-miscible sub-domains: a purely fluid domain and a por...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2014-01, Vol.611-612, p.306-315
Hauptverfasser: Bruchon, Julien, Blais, Maxime, Moulin, Nicolas, Abouorm, Lara, Drapier, Sylvain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this work is to focus on the Stokes-Darcy coupled problem in order to propose a robust monolithic approach to simulate composite manufacturing process based on liquid resin infusion. The computational domain can be divided into two non-miscible sub-domains: a purely fluid domain and a porous medium. In the purely fluid domain, the fluid flows according to the Stokes' equations, while the fluid flows into the preforms according to the Darcy's equations. Specific conditions have to be considered on the fluid/porous medium interface. Under the effect of a mechanical pressure applied on the high deformable preform/resin stacking, the resin flows and infuses through the preform which permeability is very low, down to 10-15 m2. Flows are solved using finite element method stabilized with a sub-grid scale stabilization technique (ASGS). A special attention is paid to the interface conditions, namely normal stress and velocity continuity and tangential velocity constraint similar to a Beaver-Joseph-Saffman’s condition. The originality of the model consists in using one single mesh to represents the Stokes and the Darcy sub-domains (monolithic approach). A level set context is used to represent Stokes-Darcy interface and to capture the moving flow front. This monolithic approach is now perfectly robust and leads to perform complex shapes for manufacturing process by resin infusion.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.611-612.306