Characterization of sintered inkjet-printed silicon nanoparticle thin films for thermoelectric devices

Nanostructured silicon‐based materials are good candidates for thermoelectric (TE) devices due to their low thermal conductivity, customizable electrical conductivity, and reduced cost. Generally, nanostructured TE bulk materials are obtained through compaction and sintering at high temperature (>...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2014-06, Vol.211 (6), p.1301-1307
Hauptverfasser: Drahi, Etienne, Gupta, Anshul, Blayac, Sylvain, Saunier, Sébastien, Benaben, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanostructured silicon‐based materials are good candidates for thermoelectric (TE) devices due to their low thermal conductivity, customizable electrical conductivity, and reduced cost. Generally, nanostructured TE bulk materials are obtained through compaction and sintering at high temperature (>1000 °C) of silicon nanoparticles (NPs). In order to introduce TE generators in flexible electronic devices, development of thin film TE is needed. Inkjet‐printing of silicon NPs‐based ink is an interesting technology for this targeted application due to its low cost and additive process. This paper presents the implementation of inkjet‐printing of a silicon NPs‐based ink toward the fabrication of TE material on flexible substrate and the development of a characterization method for this material. After printing, recovering of electrical properties through sintering is mandatory. Nevertheless, special care must be taken in order to keep thermal conductivity low and reduce the annealing temperature to allow the use of flexible substrates. The functional properties: electrical and thermal (measured by Raman spectroscopy), are studied as a function of the annealing process. Two types of annealing: rapid thermal annealing and microwave annealing, are investigated as well as two atmospheres: inert (N2) and reducing (N2–H2 5%).
ISSN:1862-6300
1862-6319
DOI:10.1002/pssa.201300180