Numerical simulation of 3D polyurethane expansion during manufacturing process

In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2007-11, Vol.309 (1), p.49-63
Hauptverfasser: Bikard, J., Bruchon, J., Coupez, T., Silva, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 49
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 309
creator Bikard, J.
Bruchon, J.
Coupez, T.
Silva, L.
description In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO 2creation in the mixture. The CO 2 creation is considered through an evolution law of the CO 2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts.
doi_str_mv 10.1016/j.colsurfa.2007.04.025
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_emse_00502475v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775707003044</els_id><sourcerecordid>oai_HAL_emse_00502475v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2c1ea82f995ce5e4dc953d707ac44edb9b7eafabc701cb0aa415f8a15631c6823</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoVhBZal-wuDL70MsEvZkhXfGmT9GBC0l-0sMDS1KPAXJLtY_30deO2OOxEE34cEHyG-SsgkyPL6lFHfxCk4zHIAk4HKINcfxEpuTJGqQlcfxQqq3KTGaPNJfI7xBABKm2olHh-nloMnbJLo26nB0fdd0ruk-J4MffMyBR6P2HHCfwbs4nlYT8F3v5MWu8khjUs3hJ44xktx4bCJ_OVvXYtfd7c_dw_p_un-x267T6kwZkxzkoyb3FWVJtasaqp0URswSEpxfagOhtHhgQxIOgCiktptUOqykFRu8mItvi17j9jYIfgWw4vt0duH7d5yG9kCaMiV0c9yDpdLmEIfY2D3TkiwZ4X2ZN8U2rNCC8rOCmfwagEHjLMhF7AjH__RlZSgVTnnbpYczy8_ew42kueOuPaBabR17_936hWsaox9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of 3D polyurethane expansion during manufacturing process</title><source>Elsevier ScienceDirect Journals</source><creator>Bikard, J. ; Bruchon, J. ; Coupez, T. ; Silva, L.</creator><creatorcontrib>Bikard, J. ; Bruchon, J. ; Coupez, T. ; Silva, L.</creatorcontrib><description>In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO 2creation in the mixture. The CO 2 creation is considered through an evolution law of the CO 2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2007.04.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical reaction ; Chemistry ; Colloidal state and disperse state ; Emulsions. Microemulsions. Foams ; Engineering Sciences ; Exact sciences and technology ; Foam expansion ; General and physical chemistry ; Materials ; Mixed and space-time finite elements ; Moving free surfaces ; Surface physical chemistry</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2007-11, Vol.309 (1), p.49-63</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2c1ea82f995ce5e4dc953d707ac44edb9b7eafabc701cb0aa415f8a15631c6823</citedby><cites>FETCH-LOGICAL-c377t-2c1ea82f995ce5e4dc953d707ac44edb9b7eafabc701cb0aa415f8a15631c6823</cites><orcidid>0000-0001-5867-5842 ; 0000-0003-1125-9539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927775707003044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19110546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal-emse.ccsd.cnrs.fr/emse-00502475$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bikard, J.</creatorcontrib><creatorcontrib>Bruchon, J.</creatorcontrib><creatorcontrib>Coupez, T.</creatorcontrib><creatorcontrib>Silva, L.</creatorcontrib><title>Numerical simulation of 3D polyurethane expansion during manufacturing process</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO 2creation in the mixture. The CO 2 creation is considered through an evolution law of the CO 2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts.</description><subject>Chemical reaction</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Foam expansion</subject><subject>General and physical chemistry</subject><subject>Materials</subject><subject>Mixed and space-time finite elements</subject><subject>Moving free surfaces</subject><subject>Surface physical chemistry</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v2zAMhoVhBZal-wuDL70MsEvZkhXfGmT9GBC0l-0sMDS1KPAXJLtY_30deO2OOxEE34cEHyG-SsgkyPL6lFHfxCk4zHIAk4HKINcfxEpuTJGqQlcfxQqq3KTGaPNJfI7xBABKm2olHh-nloMnbJLo26nB0fdd0ruk-J4MffMyBR6P2HHCfwbs4nlYT8F3v5MWu8khjUs3hJ44xktx4bCJ_OVvXYtfd7c_dw_p_un-x267T6kwZkxzkoyb3FWVJtasaqp0URswSEpxfagOhtHhgQxIOgCiktptUOqykFRu8mItvi17j9jYIfgWw4vt0duH7d5yG9kCaMiV0c9yDpdLmEIfY2D3TkiwZ4X2ZN8U2rNCC8rOCmfwagEHjLMhF7AjH__RlZSgVTnnbpYczy8_ew42kueOuPaBabR17_936hWsaox9</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Bikard, J.</creator><creator>Bruchon, J.</creator><creator>Coupez, T.</creator><creator>Silva, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5867-5842</orcidid><orcidid>https://orcid.org/0000-0003-1125-9539</orcidid></search><sort><creationdate>20071101</creationdate><title>Numerical simulation of 3D polyurethane expansion during manufacturing process</title><author>Bikard, J. ; Bruchon, J. ; Coupez, T. ; Silva, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2c1ea82f995ce5e4dc953d707ac44edb9b7eafabc701cb0aa415f8a15631c6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemical reaction</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Foam expansion</topic><topic>General and physical chemistry</topic><topic>Materials</topic><topic>Mixed and space-time finite elements</topic><topic>Moving free surfaces</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bikard, J.</creatorcontrib><creatorcontrib>Bruchon, J.</creatorcontrib><creatorcontrib>Coupez, T.</creatorcontrib><creatorcontrib>Silva, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bikard, J.</au><au>Bruchon, J.</au><au>Coupez, T.</au><au>Silva, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of 3D polyurethane expansion during manufacturing process</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>309</volume><issue>1</issue><spage>49</spage><epage>63</epage><pages>49-63</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO 2creation in the mixture. The CO 2 creation is considered through an evolution law of the CO 2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2007.04.025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5867-5842</orcidid><orcidid>https://orcid.org/0000-0003-1125-9539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2007-11, Vol.309 (1), p.49-63
issn 0927-7757
1873-4359
language eng
recordid cdi_hal_primary_oai_HAL_emse_00502475v1
source Elsevier ScienceDirect Journals
subjects Chemical reaction
Chemistry
Colloidal state and disperse state
Emulsions. Microemulsions. Foams
Engineering Sciences
Exact sciences and technology
Foam expansion
General and physical chemistry
Materials
Mixed and space-time finite elements
Moving free surfaces
Surface physical chemistry
title Numerical simulation of 3D polyurethane expansion during manufacturing process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%203D%20polyurethane%20expansion%20during%20manufacturing%20process&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Bikard,%20J.&rft.date=2007-11-01&rft.volume=309&rft.issue=1&rft.spage=49&rft.epage=63&rft.pages=49-63&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2007.04.025&rft_dat=%3Chal_cross%3Eoai_HAL_emse_00502475v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927775707003044&rfr_iscdi=true