Numerical simulation of 3D polyurethane expansion during manufacturing process
In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2007-11, Vol.309 (1), p.49-63 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 63 |
---|---|
container_issue | 1 |
container_start_page | 49 |
container_title | Colloids and surfaces. A, Physicochemical and engineering aspects |
container_volume | 309 |
creator | Bikard, J. Bruchon, J. Coupez, T. Silva, L. |
description | In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO
2creation in the mixture. The CO
2 creation is considered through an evolution law of the CO
2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts. |
doi_str_mv | 10.1016/j.colsurfa.2007.04.025 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_emse_00502475v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775707003044</els_id><sourcerecordid>oai_HAL_emse_00502475v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-2c1ea82f995ce5e4dc953d707ac44edb9b7eafabc701cb0aa415f8a15631c6823</originalsourceid><addsrcrecordid>eNqFkE1v2zAMhoVhBZal-wuDL70MsEvZkhXfGmT9GBC0l-0sMDS1KPAXJLtY_30deO2OOxEE34cEHyG-SsgkyPL6lFHfxCk4zHIAk4HKINcfxEpuTJGqQlcfxQqq3KTGaPNJfI7xBABKm2olHh-nloMnbJLo26nB0fdd0ruk-J4MffMyBR6P2HHCfwbs4nlYT8F3v5MWu8khjUs3hJ44xktx4bCJ_OVvXYtfd7c_dw_p_un-x267T6kwZkxzkoyb3FWVJtasaqp0URswSEpxfagOhtHhgQxIOgCiktptUOqykFRu8mItvi17j9jYIfgWw4vt0duH7d5yG9kCaMiV0c9yDpdLmEIfY2D3TkiwZ4X2ZN8U2rNCC8rOCmfwagEHjLMhF7AjH__RlZSgVTnnbpYczy8_ew42kueOuPaBabR17_936hWsaox9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical simulation of 3D polyurethane expansion during manufacturing process</title><source>Elsevier ScienceDirect Journals</source><creator>Bikard, J. ; Bruchon, J. ; Coupez, T. ; Silva, L.</creator><creatorcontrib>Bikard, J. ; Bruchon, J. ; Coupez, T. ; Silva, L.</creatorcontrib><description>In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO
2creation in the mixture. The CO
2 creation is considered through an evolution law of the CO
2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts.</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2007.04.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical reaction ; Chemistry ; Colloidal state and disperse state ; Emulsions. Microemulsions. Foams ; Engineering Sciences ; Exact sciences and technology ; Foam expansion ; General and physical chemistry ; Materials ; Mixed and space-time finite elements ; Moving free surfaces ; Surface physical chemistry</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2007-11, Vol.309 (1), p.49-63</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-2c1ea82f995ce5e4dc953d707ac44edb9b7eafabc701cb0aa415f8a15631c6823</citedby><cites>FETCH-LOGICAL-c377t-2c1ea82f995ce5e4dc953d707ac44edb9b7eafabc701cb0aa415f8a15631c6823</cites><orcidid>0000-0001-5867-5842 ; 0000-0003-1125-9539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927775707003044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3537,23909,23910,25118,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19110546$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal-emse.ccsd.cnrs.fr/emse-00502475$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bikard, J.</creatorcontrib><creatorcontrib>Bruchon, J.</creatorcontrib><creatorcontrib>Coupez, T.</creatorcontrib><creatorcontrib>Silva, L.</creatorcontrib><title>Numerical simulation of 3D polyurethane expansion during manufacturing process</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO
2creation in the mixture. The CO
2 creation is considered through an evolution law of the CO
2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts.</description><subject>Chemical reaction</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Emulsions. Microemulsions. Foams</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Foam expansion</subject><subject>General and physical chemistry</subject><subject>Materials</subject><subject>Mixed and space-time finite elements</subject><subject>Moving free surfaces</subject><subject>Surface physical chemistry</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v2zAMhoVhBZal-wuDL70MsEvZkhXfGmT9GBC0l-0sMDS1KPAXJLtY_30deO2OOxEE34cEHyG-SsgkyPL6lFHfxCk4zHIAk4HKINcfxEpuTJGqQlcfxQqq3KTGaPNJfI7xBABKm2olHh-nloMnbJLo26nB0fdd0ruk-J4MffMyBR6P2HHCfwbs4nlYT8F3v5MWu8khjUs3hJ44xktx4bCJ_OVvXYtfd7c_dw_p_un-x267T6kwZkxzkoyb3FWVJtasaqp0URswSEpxfagOhtHhgQxIOgCiktptUOqykFRu8mItvi17j9jYIfgWw4vt0duH7d5yG9kCaMiV0c9yDpdLmEIfY2D3TkiwZ4X2ZN8U2rNCC8rOCmfwagEHjLMhF7AjH__RlZSgVTnnbpYczy8_ew42kueOuPaBabR17_936hWsaox9</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Bikard, J.</creator><creator>Bruchon, J.</creator><creator>Coupez, T.</creator><creator>Silva, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5867-5842</orcidid><orcidid>https://orcid.org/0000-0003-1125-9539</orcidid></search><sort><creationdate>20071101</creationdate><title>Numerical simulation of 3D polyurethane expansion during manufacturing process</title><author>Bikard, J. ; Bruchon, J. ; Coupez, T. ; Silva, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-2c1ea82f995ce5e4dc953d707ac44edb9b7eafabc701cb0aa415f8a15631c6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Chemical reaction</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Emulsions. Microemulsions. Foams</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Foam expansion</topic><topic>General and physical chemistry</topic><topic>Materials</topic><topic>Mixed and space-time finite elements</topic><topic>Moving free surfaces</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bikard, J.</creatorcontrib><creatorcontrib>Bruchon, J.</creatorcontrib><creatorcontrib>Coupez, T.</creatorcontrib><creatorcontrib>Silva, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bikard, J.</au><au>Bruchon, J.</au><au>Coupez, T.</au><au>Silva, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of 3D polyurethane expansion during manufacturing process</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2007-11-01</date><risdate>2007</risdate><volume>309</volume><issue>1</issue><spage>49</spage><epage>63</epage><pages>49-63</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO
2creation in the mixture. The CO
2 creation is considered through an evolution law of the CO
2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2007.04.025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5867-5842</orcidid><orcidid>https://orcid.org/0000-0003-1125-9539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7757 |
ispartof | Colloids and surfaces. A, Physicochemical and engineering aspects, 2007-11, Vol.309 (1), p.49-63 |
issn | 0927-7757 1873-4359 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_emse_00502475v1 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical reaction Chemistry Colloidal state and disperse state Emulsions. Microemulsions. Foams Engineering Sciences Exact sciences and technology Foam expansion General and physical chemistry Materials Mixed and space-time finite elements Moving free surfaces Surface physical chemistry |
title | Numerical simulation of 3D polyurethane expansion during manufacturing process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%203D%20polyurethane%20expansion%20during%20manufacturing%20process&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Bikard,%20J.&rft.date=2007-11-01&rft.volume=309&rft.issue=1&rft.spage=49&rft.epage=63&rft.pages=49-63&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2007.04.025&rft_dat=%3Chal_cross%3Eoai_HAL_emse_00502475v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0927775707003044&rfr_iscdi=true |