Numerical simulation of 3D polyurethane expansion during manufacturing process

In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2007-11, Vol.309 (1), p.49-63
Hauptverfasser: Bikard, J., Bruchon, J., Coupez, T., Silva, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a phenomenological model for the expansion stage of flexible polyurethane foams production is introduced. This model is based on the expansion of a diphasic compressible fluid (quasi-homogeneous liquid/gas mixture). Expansion is illustrated through the evolution of the gas rate in the mixture. Two mechanisms are at the origin of this evolution: difference of pressure between the gas and the liquid, and CO 2creation in the mixture. The CO 2 creation is considered through an evolution law of the CO 2 production rate. Evolutions of rheological properties are taken from literature. Numerical resolution is based on mixed and space-time finite elements, using a splitting technique to decouple kinematics computation from evolution equations. Validations are performed on two simple tests: free expansion and closed expansion. An industrial case is also considered: molding of an automobile seat in flexible polyurethane foam, showing the importance of the prediction of quality defaults in these parts.
ISSN:0927-7757
1873-4359
DOI:10.1016/j.colsurfa.2007.04.025