A BIMOS-based 2T1C analogue spiking neuron circuit integrated in 28 nm FD-SOI technology for neuromorphic application
Neuromorphic computing is an emerging field of investigation for new algorithm solutions and daily life applications. We propose a novel approach to achieve an operator which uses a parasitic bipolar metal oxide semiconductor filed effect transistor combined with a capacitor and a n-type metal oxide...
Gespeichert in:
Veröffentlicht in: | Solid-state electronics 2020-06, Vol.168, p.107717, Article 107717 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neuromorphic computing is an emerging field of investigation for new algorithm solutions and daily life applications. We propose a novel approach to achieve an operator which uses a parasitic bipolar metal oxide semiconductor filed effect transistor combined with a capacitor and a n-type metal oxide semiconductor filed effect transistor. The resulting BIMOS-based leaky-integrate-and-fire spiking neuron circuit is integrated on thin silicon film in 28 nm high-k/metal-gate advanced complementary metal oxide semiconductor technology. The proof of concept is brought by 3-dimensional technology computer-aided design numerical simulations, and then validated by electrical characterization of the two-transistors-one-capacitor demonstrator. The underlying physical phenomena involved in the spiking mechanism are identified, explained and modelled. Low power consumption is obtained. In addition, the spiking neuron device benefits from intrinsic electro-static discharge robustness. |
---|---|
ISSN: | 0038-1101 1879-2405 |
DOI: | 10.1016/j.sse.2019.107717 |