AFM interlaboratory comparison for nanodimensional metrology on silicon nanowires

Silicon nanowires (NWs) with a cylindrical form are fabricated by means of nanosphere lithography and metal-assisted chemical etching to obtain high aspect ratio nanostructures (diameter of about 100 nm and length of more than 15 µm) on an approximately 1 cm 2 area. The nanodimensional characterizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement science & technology 2024-10, Vol.35 (10), p.105014
Hauptverfasser: Ribotta, Luigi, Delvallée, Alexandra, Cara, Eleonora, Bellotti, Roberto, Giura, Andrea, Carlo, Ivan De, Fretto, Matteo, Knulst, Walter, Koops, Richard, Torre, Bruno, Saghi, Zineb, Boarino, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silicon nanowires (NWs) with a cylindrical form are fabricated by means of nanosphere lithography and metal-assisted chemical etching to obtain high aspect ratio nanostructures (diameter of about 100 nm and length of more than 15 µm) on an approximately 1 cm 2 area. The nanodimensional characterization of individual NWs is performed by using several techniques, because dimensions at the nanoscale strictly relate to functional performance. In this study, we report the results of an interlaboratory comparison between measurements from a metrological atomic force microscope (AFM) and research AFMs located in different national metrology institutes (NMIs) across Europe and in a university. The purpose of this study is to characterize two measurands: (i) sidewall roughness ( R a , R q , R z , R sk , R ku parameters) extracted from the top profile measured along the nanowire length, and (ii) diameter of the nanowires measured as top-height. To this goal, the nanowires are spread horizontally on a silicon substrate, which has several areas labelled with a pattern of crosses and letters facilitating the measurement of the same NW, in order to study the reproducibility due to different instruments. Measurements show a good agreement between the different NMIs, with a combined standard uncertainty of top-height diameter less than 3%, and with a combined standard uncertainty of roughness parameters well within 5% for R a and R q values.
ISSN:0957-0233
1361-6501
DOI:10.1088/1361-6501/ad5e9f