A correspondence between the multifractal model of turbulence and the Navier-Stokes equations

The multifractal model of turbulence (MFM) and the three-dimensional Navier-Stokes equations are blended together by applying the probabilistic scaling arguments of the former to a hierarchy of weak solutions of the latter. This process imposes a lower bound on both the multifractal spectrum [Formul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2022-03, Vol.380 (2218), p.20210092-20210092
Hauptverfasser: Dubrulle, B, Gibbon, J D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The multifractal model of turbulence (MFM) and the three-dimensional Navier-Stokes equations are blended together by applying the probabilistic scaling arguments of the former to a hierarchy of weak solutions of the latter. This process imposes a lower bound on both the multifractal spectrum [Formula: see text], which appears naturally in the Large Deviation formulation of the MFM, and on [Formula: see text] the standard scaling parameter. These bounds respectively take the form: (i) [Formula: see text], which is consistent with Kolmogorov's four-fifths law ; and (ii) [Formula: see text]. The latter is significant as it prevents solutions from approaching the Navier-Stokes singular set of Caffarelli, Kohn and Nirenberg. This article is part of the theme issue 'Scaling the turbulence edifice (part 1)'.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2021.0092