Radio-Frequency Capacitive Gate-Based Sensing
Developing fast, accurate, and scalable techniques for quantum-state readout is an active area in semiconductor-based quantum computing. Here, we present results on dispersive sensing of silicon corner state quantum dots coupled to lumped-element electrical resonators via the gate. The gate capacita...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2018-07, Vol.10 (1), Article 014018 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physical review applied |
container_volume | 10 |
creator | Ahmed, Imtiaz Haigh, James A. Schaal, Simon Barraud, Sylvain Zhu, Yi Lee, Chang-min Amado, Mario Robinson, Jason W. A. Rossi, Alessandro Morton, John J. L. Gonzalez-Zalba, M. Fernando |
description | Developing fast, accurate, and scalable techniques for quantum-state readout is an active area in semiconductor-based quantum computing. Here, we present results on dispersive sensing of silicon corner state quantum dots coupled to lumped-element electrical resonators via the gate. The gate capacitance of the quantum device is placed in parallel with a superconducting spiral inductor resulting in resonators with loaded $Q$ factors in the 400-800 range. We utilize resonators operating at 330 and 616 MHz, and achieve charge sensitivities of 7.7 and 1.3 $\mu$e $\sqrt Hz$, respectively. We perform a parametric study of the resonator to reveal its optimal operation points and perform a circuit analysis to determine the best resonator design. The results place gate-based sensing on a par with the best reported radio-frequency single-electron transistor sensitivities while providing a fast and compact method for quantum-state readout. |
doi_str_mv | 10.1103/PhysRevApplied.10.014018 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_02184686v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_cea_02184686v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-ef89c6579365656cff7c36e22015eedf4e3424e33c0ad46aa7b1740288d1533c3</originalsourceid><addsrcrecordid>eNpVkMFKw0AQhhdRsNS-Q64ets7sbpLtsQbbCgGl6nkZNxO7UpuYrYG-vSkVUQZmho9_5vAJkSBMEUHfPG4Occ39vG23gavpgAENoD0TI6U1yhxwdv5nvxSTGN8BAFGlYGEk5Jqq0MhFx59fvPOHpKCWfNiHnpMl7VneUuQqeeJdDLu3K3FR0zby5GeOxcvi7rlYyfJheV_MS-m10XvJtZ35LM1nOkuH8nWde52xUoApc1Ub1kYNTXugymRE-SvmBpS1FaYD1WNxffq7oa1ru_BB3cE1FNxqXjrP5EChNZnNehyy9pT1XRNjx_XvAYI7WnL_LR3xyZL-BsaoXLw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Radio-Frequency Capacitive Gate-Based Sensing</title><source>American Physical Society Journals</source><creator>Ahmed, Imtiaz ; Haigh, James A. ; Schaal, Simon ; Barraud, Sylvain ; Zhu, Yi ; Lee, Chang-min ; Amado, Mario ; Robinson, Jason W. A. ; Rossi, Alessandro ; Morton, John J. L. ; Gonzalez-Zalba, M. Fernando</creator><creatorcontrib>Ahmed, Imtiaz ; Haigh, James A. ; Schaal, Simon ; Barraud, Sylvain ; Zhu, Yi ; Lee, Chang-min ; Amado, Mario ; Robinson, Jason W. A. ; Rossi, Alessandro ; Morton, John J. L. ; Gonzalez-Zalba, M. Fernando</creatorcontrib><description>Developing fast, accurate, and scalable techniques for quantum-state readout is an active area in semiconductor-based quantum computing. Here, we present results on dispersive sensing of silicon corner state quantum dots coupled to lumped-element electrical resonators via the gate. The gate capacitance of the quantum device is placed in parallel with a superconducting spiral inductor resulting in resonators with loaded $Q$ factors in the 400-800 range. We utilize resonators operating at 330 and 616 MHz, and achieve charge sensitivities of 7.7 and 1.3 $\mu$e $\sqrt Hz$, respectively. We perform a parametric study of the resonator to reveal its optimal operation points and perform a circuit analysis to determine the best resonator design. The results place gate-based sensing on a par with the best reported radio-frequency single-electron transistor sensitivities while providing a fast and compact method for quantum-state readout.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.10.014018</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Engineering Sciences</subject><ispartof>Physical review applied, 2018-07, Vol.10 (1), Article 014018</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-ef89c6579365656cff7c36e22015eedf4e3424e33c0ad46aa7b1740288d1533c3</citedby><cites>FETCH-LOGICAL-c343t-ef89c6579365656cff7c36e22015eedf4e3424e33c0ad46aa7b1740288d1533c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,2865,2866,27907,27908</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-02184686$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Imtiaz</creatorcontrib><creatorcontrib>Haigh, James A.</creatorcontrib><creatorcontrib>Schaal, Simon</creatorcontrib><creatorcontrib>Barraud, Sylvain</creatorcontrib><creatorcontrib>Zhu, Yi</creatorcontrib><creatorcontrib>Lee, Chang-min</creatorcontrib><creatorcontrib>Amado, Mario</creatorcontrib><creatorcontrib>Robinson, Jason W. A.</creatorcontrib><creatorcontrib>Rossi, Alessandro</creatorcontrib><creatorcontrib>Morton, John J. L.</creatorcontrib><creatorcontrib>Gonzalez-Zalba, M. Fernando</creatorcontrib><title>Radio-Frequency Capacitive Gate-Based Sensing</title><title>Physical review applied</title><description>Developing fast, accurate, and scalable techniques for quantum-state readout is an active area in semiconductor-based quantum computing. Here, we present results on dispersive sensing of silicon corner state quantum dots coupled to lumped-element electrical resonators via the gate. The gate capacitance of the quantum device is placed in parallel with a superconducting spiral inductor resulting in resonators with loaded $Q$ factors in the 400-800 range. We utilize resonators operating at 330 and 616 MHz, and achieve charge sensitivities of 7.7 and 1.3 $\mu$e $\sqrt Hz$, respectively. We perform a parametric study of the resonator to reveal its optimal operation points and perform a circuit analysis to determine the best resonator design. The results place gate-based sensing on a par with the best reported radio-frequency single-electron transistor sensitivities while providing a fast and compact method for quantum-state readout.</description><subject>Engineering Sciences</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpVkMFKw0AQhhdRsNS-Q64ets7sbpLtsQbbCgGl6nkZNxO7UpuYrYG-vSkVUQZmho9_5vAJkSBMEUHfPG4Occ39vG23gavpgAENoD0TI6U1yhxwdv5nvxSTGN8BAFGlYGEk5Jqq0MhFx59fvPOHpKCWfNiHnpMl7VneUuQqeeJdDLu3K3FR0zby5GeOxcvi7rlYyfJheV_MS-m10XvJtZ35LM1nOkuH8nWde52xUoApc1Ub1kYNTXugymRE-SvmBpS1FaYD1WNxffq7oa1ru_BB3cE1FNxqXjrP5EChNZnNehyy9pT1XRNjx_XvAYI7WnL_LR3xyZL-BsaoXLw</recordid><startdate>20180719</startdate><enddate>20180719</enddate><creator>Ahmed, Imtiaz</creator><creator>Haigh, James A.</creator><creator>Schaal, Simon</creator><creator>Barraud, Sylvain</creator><creator>Zhu, Yi</creator><creator>Lee, Chang-min</creator><creator>Amado, Mario</creator><creator>Robinson, Jason W. A.</creator><creator>Rossi, Alessandro</creator><creator>Morton, John J. L.</creator><creator>Gonzalez-Zalba, M. Fernando</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20180719</creationdate><title>Radio-Frequency Capacitive Gate-Based Sensing</title><author>Ahmed, Imtiaz ; Haigh, James A. ; Schaal, Simon ; Barraud, Sylvain ; Zhu, Yi ; Lee, Chang-min ; Amado, Mario ; Robinson, Jason W. A. ; Rossi, Alessandro ; Morton, John J. L. ; Gonzalez-Zalba, M. Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-ef89c6579365656cff7c36e22015eedf4e3424e33c0ad46aa7b1740288d1533c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Imtiaz</creatorcontrib><creatorcontrib>Haigh, James A.</creatorcontrib><creatorcontrib>Schaal, Simon</creatorcontrib><creatorcontrib>Barraud, Sylvain</creatorcontrib><creatorcontrib>Zhu, Yi</creatorcontrib><creatorcontrib>Lee, Chang-min</creatorcontrib><creatorcontrib>Amado, Mario</creatorcontrib><creatorcontrib>Robinson, Jason W. A.</creatorcontrib><creatorcontrib>Rossi, Alessandro</creatorcontrib><creatorcontrib>Morton, John J. L.</creatorcontrib><creatorcontrib>Gonzalez-Zalba, M. Fernando</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Imtiaz</au><au>Haigh, James A.</au><au>Schaal, Simon</au><au>Barraud, Sylvain</au><au>Zhu, Yi</au><au>Lee, Chang-min</au><au>Amado, Mario</au><au>Robinson, Jason W. A.</au><au>Rossi, Alessandro</au><au>Morton, John J. L.</au><au>Gonzalez-Zalba, M. Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radio-Frequency Capacitive Gate-Based Sensing</atitle><jtitle>Physical review applied</jtitle><date>2018-07-19</date><risdate>2018</risdate><volume>10</volume><issue>1</issue><artnum>014018</artnum><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>Developing fast, accurate, and scalable techniques for quantum-state readout is an active area in semiconductor-based quantum computing. Here, we present results on dispersive sensing of silicon corner state quantum dots coupled to lumped-element electrical resonators via the gate. The gate capacitance of the quantum device is placed in parallel with a superconducting spiral inductor resulting in resonators with loaded $Q$ factors in the 400-800 range. We utilize resonators operating at 330 and 616 MHz, and achieve charge sensitivities of 7.7 and 1.3 $\mu$e $\sqrt Hz$, respectively. We perform a parametric study of the resonator to reveal its optimal operation points and perform a circuit analysis to determine the best resonator design. The results place gate-based sensing on a par with the best reported radio-frequency single-electron transistor sensitivities while providing a fast and compact method for quantum-state readout.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.10.014018</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-7019 |
ispartof | Physical review applied, 2018-07, Vol.10 (1), Article 014018 |
issn | 2331-7019 2331-7019 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_02184686v1 |
source | American Physical Society Journals |
subjects | Engineering Sciences |
title | Radio-Frequency Capacitive Gate-Based Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radio-Frequency%20Capacitive%20Gate-Based%20Sensing&rft.jtitle=Physical%20review%20applied&rft.au=Ahmed,%20Imtiaz&rft.date=2018-07-19&rft.volume=10&rft.issue=1&rft.artnum=014018&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.10.014018&rft_dat=%3Chal_cross%3Eoai_HAL_cea_02184686v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |