Radio-Frequency Capacitive Gate-Based Sensing

Developing fast, accurate, and scalable techniques for quantum-state readout is an active area in semiconductor-based quantum computing. Here, we present results on dispersive sensing of silicon corner state quantum dots coupled to lumped-element electrical resonators via the gate. The gate capacita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2018-07, Vol.10 (1), Article 014018
Hauptverfasser: Ahmed, Imtiaz, Haigh, James A., Schaal, Simon, Barraud, Sylvain, Zhu, Yi, Lee, Chang-min, Amado, Mario, Robinson, Jason W. A., Rossi, Alessandro, Morton, John J. L., Gonzalez-Zalba, M. Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing fast, accurate, and scalable techniques for quantum-state readout is an active area in semiconductor-based quantum computing. Here, we present results on dispersive sensing of silicon corner state quantum dots coupled to lumped-element electrical resonators via the gate. The gate capacitance of the quantum device is placed in parallel with a superconducting spiral inductor resulting in resonators with loaded $Q$ factors in the 400-800 range. We utilize resonators operating at 330 and 616 MHz, and achieve charge sensitivities of 7.7 and 1.3 $\mu$e $\sqrt Hz$, respectively. We perform a parametric study of the resonator to reveal its optimal operation points and perform a circuit analysis to determine the best resonator design. The results place gate-based sensing on a par with the best reported radio-frequency single-electron transistor sensitivities while providing a fast and compact method for quantum-state readout.
ISSN:2331-7019
2331-7019
DOI:10.1103/PhysRevApplied.10.014018