GPU deformable part model for object recognition

We consider the problem of rapidly detecting objects in static images or videos. The task consists in locating and identifying objects of interest. With the progress of affordable high computing hardware, we propose to analyse and evaluate the deformable part model on the Graphics Processing Unit. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2018-02, Vol.14 (2), p.279-291
Hauptverfasser: Gadeski, Etienne, Fard, Hamidreza Odabai, Le Borgne, Hervé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 2
container_start_page 279
container_title Journal of real-time image processing
container_volume 14
creator Gadeski, Etienne
Fard, Hamidreza Odabai
Le Borgne, Hervé
description We consider the problem of rapidly detecting objects in static images or videos. The task consists in locating and identifying objects of interest. With the progress of affordable high computing hardware, we propose to analyse and evaluate the deformable part model on the Graphics Processing Unit. We do not take any prior assumptions on the scene and location of the objects. We provide a fast implementation and analyse the different modules of the state-of-the-art detector. Our implementation allows to accelerate both training and testing. While maintaining comparable classification performance, we report a speed-up of × 10.6 using a standard GPU card compared to a baseline implemented in C++ on a single core and × 5 compared to a multi-core OpenMP (8 threads) implementation.
doi_str_mv 10.1007/s11554-014-0447-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_01820312v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918675845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-993414b1f6f4999f92a599bd1d9945aa5892743a06704b07a08122558c7e7d493</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLeAJw_Rmc1uNnMsRVuhoAd7XjbJpqak2bqbCv57t0TqycMww_C9x8xj7BbhAQHUY0CUUqSAsYRQqTxjEyxyTAuOdH6aAS7ZVQhbgFzlmZwwWLytk9o2zu9M2dlkb_yQ7FxtuyTuEldubTUk3lZu07dD6_prdtGYLtib3z5l6-en9_kyXb0uXuazVVoJDkNKlAkUJTZ5I4ioIW4kUVljTSSkMbIgrkRm4h0gSlAGCuRcyqJSVtWCsim7H30_TKf3vt0Z_62dafVyttKVNRowvpMh_8LI3o3s3rvPgw2D3rqD7-N5mlP8XMlCyEjhSFXeheBtc7JF0McQ9RhidI4VQ9RHDR81IbL9xvo_5_9FP_qccEg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918675845</pqid></control><display><type>article</type><title>GPU deformable part model for object recognition</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Gadeski, Etienne ; Fard, Hamidreza Odabai ; Le Borgne, Hervé</creator><creatorcontrib>Gadeski, Etienne ; Fard, Hamidreza Odabai ; Le Borgne, Hervé</creatorcontrib><description>We consider the problem of rapidly detecting objects in static images or videos. The task consists in locating and identifying objects of interest. With the progress of affordable high computing hardware, we propose to analyse and evaluate the deformable part model on the Graphics Processing Unit. We do not take any prior assumptions on the scene and location of the objects. We provide a fast implementation and analyse the different modules of the state-of-the-art detector. Our implementation allows to accelerate both training and testing. While maintaining comparable classification performance, we report a speed-up of × 10.6 using a standard GPU card compared to a baseline implemented in C++ on a single core and × 5 compared to a multi-core OpenMP (8 threads) implementation.</description><identifier>ISSN: 1861-8200</identifier><identifier>EISSN: 1861-8219</identifier><identifier>DOI: 10.1007/s11554-014-0447-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Graphics ; Computer Science ; Computer Vision and Pattern Recognition ; Deformation ; Formability ; Graphics processing units ; Image Processing and Computer Vision ; Multimedia ; Multimedia Information Systems ; Object recognition ; Original Research Paper ; Pattern Recognition ; Pedestrians ; Sensors ; Signal,Image and Speech Processing</subject><ispartof>Journal of real-time image processing, 2018-02, Vol.14 (2), p.279-291</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2014.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-993414b1f6f4999f92a599bd1d9945aa5892743a06704b07a08122558c7e7d493</citedby><cites>FETCH-LOGICAL-c420t-993414b1f6f4999f92a599bd1d9945aa5892743a06704b07a08122558c7e7d493</cites><orcidid>0000-0003-0520-8436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11554-014-0447-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2918675845?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-01820312$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gadeski, Etienne</creatorcontrib><creatorcontrib>Fard, Hamidreza Odabai</creatorcontrib><creatorcontrib>Le Borgne, Hervé</creatorcontrib><title>GPU deformable part model for object recognition</title><title>Journal of real-time image processing</title><addtitle>J Real-Time Image Proc</addtitle><description>We consider the problem of rapidly detecting objects in static images or videos. The task consists in locating and identifying objects of interest. With the progress of affordable high computing hardware, we propose to analyse and evaluate the deformable part model on the Graphics Processing Unit. We do not take any prior assumptions on the scene and location of the objects. We provide a fast implementation and analyse the different modules of the state-of-the-art detector. Our implementation allows to accelerate both training and testing. While maintaining comparable classification performance, we report a speed-up of × 10.6 using a standard GPU card compared to a baseline implemented in C++ on a single core and × 5 compared to a multi-core OpenMP (8 threads) implementation.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><subject>Deformation</subject><subject>Formability</subject><subject>Graphics processing units</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Original Research Paper</subject><subject>Pattern Recognition</subject><subject>Pedestrians</subject><subject>Sensors</subject><subject>Signal,Image and Speech Processing</subject><issn>1861-8200</issn><issn>1861-8219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLw0AQhRdRsFZ_gLeAJw_Rmc1uNnMsRVuhoAd7XjbJpqak2bqbCv57t0TqycMww_C9x8xj7BbhAQHUY0CUUqSAsYRQqTxjEyxyTAuOdH6aAS7ZVQhbgFzlmZwwWLytk9o2zu9M2dlkb_yQ7FxtuyTuEldubTUk3lZu07dD6_prdtGYLtib3z5l6-en9_kyXb0uXuazVVoJDkNKlAkUJTZ5I4ioIW4kUVljTSSkMbIgrkRm4h0gSlAGCuRcyqJSVtWCsim7H30_TKf3vt0Z_62dafVyttKVNRowvpMh_8LI3o3s3rvPgw2D3rqD7-N5mlP8XMlCyEjhSFXeheBtc7JF0McQ9RhidI4VQ9RHDR81IbL9xvo_5_9FP_qccEg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Gadeski, Etienne</creator><creator>Fard, Hamidreza Odabai</creator><creator>Le Borgne, Hervé</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0520-8436</orcidid></search><sort><creationdate>20180201</creationdate><title>GPU deformable part model for object recognition</title><author>Gadeski, Etienne ; Fard, Hamidreza Odabai ; Le Borgne, Hervé</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-993414b1f6f4999f92a599bd1d9945aa5892743a06704b07a08122558c7e7d493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><topic>Deformation</topic><topic>Formability</topic><topic>Graphics processing units</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Original Research Paper</topic><topic>Pattern Recognition</topic><topic>Pedestrians</topic><topic>Sensors</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gadeski, Etienne</creatorcontrib><creatorcontrib>Fard, Hamidreza Odabai</creatorcontrib><creatorcontrib>Le Borgne, Hervé</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of real-time image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gadeski, Etienne</au><au>Fard, Hamidreza Odabai</au><au>Le Borgne, Hervé</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU deformable part model for object recognition</atitle><jtitle>Journal of real-time image processing</jtitle><stitle>J Real-Time Image Proc</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>14</volume><issue>2</issue><spage>279</spage><epage>291</epage><pages>279-291</pages><issn>1861-8200</issn><eissn>1861-8219</eissn><abstract>We consider the problem of rapidly detecting objects in static images or videos. The task consists in locating and identifying objects of interest. With the progress of affordable high computing hardware, we propose to analyse and evaluate the deformable part model on the Graphics Processing Unit. We do not take any prior assumptions on the scene and location of the objects. We provide a fast implementation and analyse the different modules of the state-of-the-art detector. Our implementation allows to accelerate both training and testing. While maintaining comparable classification performance, we report a speed-up of × 10.6 using a standard GPU card compared to a baseline implemented in C++ on a single core and × 5 compared to a multi-core OpenMP (8 threads) implementation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11554-014-0447-5</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0520-8436</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1861-8200
ispartof Journal of real-time image processing, 2018-02, Vol.14 (2), p.279-291
issn 1861-8200
1861-8219
language eng
recordid cdi_hal_primary_oai_HAL_cea_01820312v1
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Artificial Intelligence
Computer Graphics
Computer Science
Computer Vision and Pattern Recognition
Deformation
Formability
Graphics processing units
Image Processing and Computer Vision
Multimedia
Multimedia Information Systems
Object recognition
Original Research Paper
Pattern Recognition
Pedestrians
Sensors
Signal,Image and Speech Processing
title GPU deformable part model for object recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU%20deformable%20part%20model%20for%20object%20recognition&rft.jtitle=Journal%20of%20real-time%20image%20processing&rft.au=Gadeski,%20Etienne&rft.date=2018-02-01&rft.volume=14&rft.issue=2&rft.spage=279&rft.epage=291&rft.pages=279-291&rft.issn=1861-8200&rft.eissn=1861-8219&rft_id=info:doi/10.1007/s11554-014-0447-5&rft_dat=%3Cproquest_hal_p%3E2918675845%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2918675845&rft_id=info:pmid/&rfr_iscdi=true