GPU deformable part model for object recognition

We consider the problem of rapidly detecting objects in static images or videos. The task consists in locating and identifying objects of interest. With the progress of affordable high computing hardware, we propose to analyse and evaluate the deformable part model on the Graphics Processing Unit. W...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of real-time image processing 2018-02, Vol.14 (2), p.279-291
Hauptverfasser: Gadeski, Etienne, Fard, Hamidreza Odabai, Le Borgne, Hervé
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the problem of rapidly detecting objects in static images or videos. The task consists in locating and identifying objects of interest. With the progress of affordable high computing hardware, we propose to analyse and evaluate the deformable part model on the Graphics Processing Unit. We do not take any prior assumptions on the scene and location of the objects. We provide a fast implementation and analyse the different modules of the state-of-the-art detector. Our implementation allows to accelerate both training and testing. While maintaining comparable classification performance, we report a speed-up of × 10.6 using a standard GPU card compared to a baseline implemented in C++ on a single core and × 5 compared to a multi-core OpenMP (8 threads) implementation.
ISSN:1861-8200
1861-8219
DOI:10.1007/s11554-014-0447-5