Realization of a Binary-Outcome Projection Measurement of a Three-Level Superconducting Quantum System
Binary-outcome measurements allow to determine whether a multi-level quantum system is in a certain state while preserving quantum coherence between all orthogonal states. In this paper, we explore different regimes of the dispersive readout of a three-level superconducting quantum system coupled to...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2016, Vol.6 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Binary-outcome measurements allow to determine whether a multi-level quantum system is in a certain state while preserving quantum coherence between all orthogonal states. In this paper, we explore different regimes of the dispersive readout of a three-level superconducting quantum system coupled to a microwave cavity in order to implement binary-outcome measurements. By designing identical cavity frequency shifts for the first and second excited states of the system, we realize strong projective binary-outcome measurements onto its ground state with a fidelity of 94.3%. Complemented with standard microwave control and low-noise parametric amplification, this scheme enables the quantum non-demolition detection of leakage errors and can be used to create sets of compatible measurements to reveal the contextual nature of superconducting circuits. |
---|---|
ISSN: | 2331-7019 2331-7019 |
DOI: | 10.1103/PhysRevB.86.180504 |