Adsorption and STM imaging of polycyclic aromatic hydrocarbons on graphene

The structural characterization of polycyclic aromatic hydrocarbon molecules adsorbed on graphene is of fundamental importance in view of the use of graphene or graphene nanoribbons for electronic applications. Before reaching this point, one has to determine the structure of the adsorbed molecules....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-01, Vol.91 (4), Article 045427
Hauptverfasser: Dappe, Y. J., Andersen, M., Balog, R., Hornekær, L., Bouju, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structural characterization of polycyclic aromatic hydrocarbon molecules adsorbed on graphene is of fundamental importance in view of the use of graphene or graphene nanoribbons for electronic applications. Before reaching this point, one has to determine the structure of the adsorbed molecules. Here, we study the case of benzene, coronene, and hexabenzocoronene on a graphene layer. First, the adsorption properties of single molecules are calculated using first-principles calculations at the level of density functional theory. We benefit from a recent scheme, particularly adapted for weakly adsorbed molecules, allowing us to precisely calculate the van der Waals contribution. Then, scanning tunneling microscopy (STM) is used to produce images of self-assembled molecules comparing different theoretical approaches to experimental observations. Finally, we consider the imaging of isolated molecules, and we show how the STM tip influences the molecule position by soft mechanical interaction during the scanning process.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.91.045427