First observation of HO˙ reactivity in water under high energy ions at elevated temperature

This communication reports the first observation of the formation of HO˙ produced under two different High energy ion beams, (18)O(8+) and (36)Ar(18+) having Linear Energy Transfers (LET) of 65 and 350 eV nm(-1) respectively, at temperatures up to 411 K. Both scavenging with various concentrations o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2014-11, Vol.16 (43), p.23975-23984
Hauptverfasser: Balcerzyk, A, Boughattas, I, Pin, S, Balanzat, E, Baldacchino, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This communication reports the first observation of the formation of HO˙ produced under two different High energy ion beams, (18)O(8+) and (36)Ar(18+) having Linear Energy Transfers (LET) of 65 and 350 eV nm(-1) respectively, at temperatures up to 411 K. Both scavenging with various concentrations of SCN(-) and heavy-ion pulse radiolysis methods are used with an original temperature and pressure regulated optical cell. Deconvolution of kinetics is used to analyze the evolution of HO˙ track segment yields as a function of time and temperature. It takes care of involving the ionic strength effect and Arrhenius expression in the rate constants correction. The results show a fast decay of HO˙ yields in the 10(-10)-10(-8) s range which denotes an efficient reactivity of this species in the track structure of the ion beam. This effect is enhanced with the lowest LET of O(8+). Increasing the temperature also accelerates the decays for both ions. These observations are discussed in terms of temperature activation of reactions and the track structure exhibiting the formation of HO˙ in a "low LET" penumbra around the ionization tracks. HO˙ track segment yields at 100 ns, of 0.4 × 10(-7) and 0.6 × 10(-7) mol J(-1), respectively for 350 and 65 eV nm(-1), are not affected by temperature.
ISSN:1463-9076
1463-9084
DOI:10.1039/c4cp03049d