Distorted plane waves in chaotic scattering
We provide a precise description of distorted plane waves for semiclassical Schrödinger operators under the assumption that the classical trapped set is hyperbolic and that a certain topological pressure (a quantity defined using thermodynamical formalism) is negative. Distorted plane waves are gene...
Gespeichert in:
Veröffentlicht in: | Analysis & PDE 2017-01, Vol.10 (4), p.765-816 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a precise description of distorted plane waves for semiclassical Schrödinger operators under the assumption that the classical trapped set is hyperbolic and that a certain topological pressure (a quantity defined using thermodynamical formalism) is negative. Distorted plane waves are generalized eigenfunctions of the Schrödinger operator which differ from free plane waves, $e^i$$^{< x,\xi >}$$^{/h}$, by an outgoing term. Under our assumptions we show that they can be written as a convergent sum of Lagrangian states. That provides a description of their semiclassical defect measures in the spirit of quantum ergodicity and extends results of Guillarmou and Naud obtained for hyperbolic quotients to our setting. |
---|---|
ISSN: | 2157-5045 1948-206X |
DOI: | 10.2140/apde.2017.10.765 |