Distorted plane waves in chaotic scattering

We provide a precise description of distorted plane waves for semiclassical Schrödinger operators under the assumption that the classical trapped set is hyperbolic and that a certain topological pressure (a quantity defined using thermodynamical formalism) is negative. Distorted plane waves are gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis & PDE 2017-01, Vol.10 (4), p.765-816
1. Verfasser: Ingremeau, Maxime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a precise description of distorted plane waves for semiclassical Schrödinger operators under the assumption that the classical trapped set is hyperbolic and that a certain topological pressure (a quantity defined using thermodynamical formalism) is negative. Distorted plane waves are generalized eigenfunctions of the Schrödinger operator which differ from free plane waves, $e^i$$^{< x,\xi >}$$^{/h}$, by an outgoing term. Under our assumptions we show that they can be written as a convergent sum of Lagrangian states. That provides a description of their semiclassical defect measures in the spirit of quantum ergodicity and extends results of Guillarmou and Naud obtained for hyperbolic quotients to our setting.
ISSN:2157-5045
1948-206X
DOI:10.2140/apde.2017.10.765