Hydrology and Earth System Sciences / Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices

To improve the understanding of how aquifers in different alluvial settings respond to extreme events in a changing environment, we analyze standardized time series of groundwater levels (Standardized Groundwater level Index – SGI), precipitation (Standardized Precipitation Index – SPI), and river s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Haas, Johannes Christoph, Birk, Steffen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the understanding of how aquifers in different alluvial settings respond to extreme events in a changing environment, we analyze standardized time series of groundwater levels (Standardized Groundwater level Index – SGI), precipitation (Standardized Precipitation Index – SPI), and river stages of three subregions within the catchment of the river Mur (Austria). Using correlation matrices, differences and similarities between the subregions, ranging from the Alpine upstream part of the catchment to its shallow foreland basin, are identified and visualized. Generally, river stages exhibit the highest correlations with groundwater levels, frequently affecting not only the wells closest to the river, but also more distant parts of the alluvial aquifer. As a result, human impacts on the river are transferred to the aquifer, thus affecting the behavior of groundwater levels. Hence, to avoid misinterpretation of groundwater levels in this type of setting, it is important to account for the river and human impacts on it. While the river is a controlling factor in all of the subregions, an influence of precipitation is evident too. Except for deep wells found in an upstream Alpine basin, groundwater levels show the highest correlation with a precipitation accumulation period of 6 months (SPI6). The correlation in the foreland is generally higher than that in the Alpine subregions, thus corresponding to a trend from deeper wells in the Alpine parts of the catchment towards more shallow wells in the foreland. Extreme events are found to affect the aquifer in different ways. As shown with the well-known European 2003 drought and the local 2009 floods, correlations are reduced under flood conditions, but increased under drought. Thus, precipitation, groundwater levels and river stages tend to exhibit uniform behavior under drought conditions, whereas they may show irregular behavior during floods. Similarly, correlations are found to be weaker in years with little snow as compared with those with much snow. This is in agreement with typical aquifer response times over 1 month, suggesting that short events such as floods will not affect much of the aquifer, whereas a long-term event such as a drought or snow-rich winter will. Splitting the time series into periods of 12 years reveals a tendency towards higher correlations in the most recent time period from 1999 to 2010. This time period also shows the highest number of events with SPI values below −2. The SG
DOI:10.5194/hess-21-2421-2017