Rethinking protein drug design with highly accurate structure prediction of anti-CRISPR proteins
Protein therapeutics play an important role in controlling the functions and activities of disease-causing proteins in modern medicine. Despite protein therapeutics having several advantages over traditional small-molecule therapeutics, further development has been hindered by drug complexity and de...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protein therapeutics play an important role in controlling the functions and activities of disease-causing proteins in modern medicine. Despite protein therapeutics having several advantages over traditional small-molecule therapeutics, further development has been hindered by drug complexity and delivery issues. However, recent progress in deep learning-based protein structure prediction approaches, such as AlphaFold2, opens new opportunities to exploit the complexity of these macro-biomolecules for highly specialised design to inhibit, regulate or even manipulate specific disease-causing proteins. Anti-CRISPR proteins are small proteins from bacteriophages that counter-defend against the prokaryotic adaptive immunity of CRISPR-Cas systems. They are unique examples of natural protein therapeutics that have been optimized by the host-parasite evolutionary arms race to inhibit a wide variety of host proteins. Here, we show that these anti-CRISPR proteins display diverse inhibition mechanisms through accurate structural prediction and functional analysis. We find that these phage-derived proteins are extremely distinct in structure, some of which have no homologues in the current protein structure domain. Furthermore, we find a novel family of anti-CRISPR proteins which are structurally similar to the recently discovered mechanism of manipulating host proteins through enzymatic activity, rather than through direct inference. Using highly accurate structure prediction, we present a wide variety of protein-manipulating strategies of anti-CRISPR proteins for future protein drug design. |
---|---|
ISSN: | 1424-8247 1424-8247 |