The mutational landscape of metastatic castration-sensitive prostate cancer : the spectrum theory revisited
Background: Emerging data suggest that metastasis is a spectrum of disease burden rather than a binary state, and local therapies, such as radiation, might improve outcomes in oligometastasis. However, current definitions of oligometastasis are solely numerical. Objective: To characterize the somati...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background: Emerging data suggest that metastasis is a spectrum of disease burden rather than a binary state, and local therapies, such as radiation, might improve outcomes in oligometastasis. However, current definitions of oligometastasis are solely numerical.
Objective: To characterize the somatic mutational landscape across the disease spectrum of metastatic castration-sensitive prostate cancer (mCSPC) to elucidate a biological definition of oligometastatic CSPC.
Design, setting, and participants: This was a retrospective study of men with mCSPC who underwent clinical-grade sequencing of their tumors (269 primary tumor, 25 metastatic sites). Patients were classified as having biochemically recurrent (ie, micrometa-static), metachronous oligometastatic (5 lesions), or de novo metastatic (metastasis at diagnosis) disease.
Outcome measurements and statistical analysis: We measured the frequency of driver mutations across metastatic classifications and the genomic associations with radiographic progression-free survival (rPFS) and time to castrate-resistant prostate cancer (CRPC).
Results and limitations: The frequency of driver mutations in TP53 (p = 0.01), WNT (p = 0.08), and cell cycle (p = 0.04) genes increased across the mCSPC spectrum. TP53 mutation was associated with shorter rPFS (26.7 vs 48.6 mo; p = 0.002), and time to CRPC (95.6 vs 155.8 mo; p = 0.02) in men with oligometastasis, and identified men with polymetastasis with better rPFS (TP53 wild-type, 42.7 mo; TP53 mutated, 18.5 mo; p = 0.01). Mutations in TP53 (incidence rate ratio [IRR] 1.45; p = 0.004) and DNA double-strand break repair (IRR 1.61; p < 0.001) were associated with a higher number of metastases. Mutations in TP53 were also independently associated with shorter rPFS (hazard ratio [HR] 1.59; p = 0.03) and the development of CRPC (HR 1.71; p = 0.01) on multivariable analysis. This study was limited by its retrospective nature, sample size, and the use of commercially available sequencing platforms, resulting in a limited predefined set of genes examined.
Conclusions: Somatic mutational profiles reveal a spectrum of metastatic biology that helps in redefining oligometastasis beyond a simple binary state of lesion enumeration.
Patient summary: Oligometastatic prostate cancer is typically defined as less than three to five metastatic lesions and evidence suggests that using radiation or surgery to treat these sites improves clinical outcome |
---|---|
ISSN: | 0302-2838 1873-7560 |