Overdrive pacing of spiral waves in a model of human ventricular tissue

High-voltage electrical defibrillation remains the only reliable method of quickly controlling life-threatening cardiac arrhythmias. This paper is devoted to studying an alternative approach, low-voltage cardioversion (LVC), which is based on ideas from non-linear dynamics and aims to remove sources...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Pravdin, Sergei F, Epanchintsev, Timofei I, Panfilov, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-voltage electrical defibrillation remains the only reliable method of quickly controlling life-threatening cardiac arrhythmias. This paper is devoted to studying an alternative approach, low-voltage cardioversion (LVC), which is based on ideas from non-linear dynamics and aims to remove sources of cardiac arrhythmias by applying high-frequency stimulation to cardiac tissue. We perform a detailed in-silico study of the elimination of arrhythmias caused by rotating spiral waves in a TP06 model of human cardiac tissue. We consider three parameter sets with slopes of the APD restitution curve of 0.7, 1.1 and 1.4, and we study LVC at the baseline and under the blocking of INa and ICaL and under the application of the drugs verapamil and amiodarone. We show that pacing can remove spiral waves; however, its efficiency can be substantially reduced by dynamic instabilities. We classify these instabilities and show that the blocking of INa and the application of amiodarone increase the efficiency of the method, while the blocking of ICaL and the application of verapamil decrease the efficiency. We discuss the mechanisms and the possible clinical applications resulting from our study.
ISSN:2045-2322
2045-2322