Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics

Purpose Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. Methods Sequencing of the complete 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Khan, Mubeen, Cornelis, Stephanie S, Del Pozo-Valero, Marta, Whelan, Laura, Runhart, Esmee H, Mishra, Ketan, Bults, Femke, AlSwaiti, Yahya, AlTalbishi, Alaa, De Baere, Elfride, Banfi, Sandro, Banin, Eyal, Bauwens, Miriam, Ben-Yosef, Tamar, Boon, Camiel J. F, van den Born, L. Ingeborgh, Defoort, Sabine, Devos, Aurore, Dockery, Adrian, Dudakova, Lubica, Fakin, Ana, Farrar, G. Jane, Sallum, Juliana Maria Ferraz, Fujinami, Kaoru, Gilissen, Christian, Glavac, Damjan, Gorin, Michael B, Greenberg, Jacquie, Hayashi, Takaaki, Hettinga, Ymkje M, Hoischen, Alexander, Hoyng, Carel B, Hufendiek, Karsten, Jaegle, Herbert, Kamakari, Smaragda, Karali, Marianthi, Kellner, Ulrich, Klaver, Caroline C. W, Kousal, Bohdan, Lamey, Tina M, MacDonald, Ian M, Matynia, Anna, McLaren, Terri L, Mena, Marcela D, Meunier, Isabelle, Miller, Rianne, Newman, Hadas, Ntozini, Buhle, Oldak, Monika, Pieterse, Marc, Podhajcer, Osvaldo L, Puech, Bernard, Ramesar, Raj, Ruether, Klaus, Salameh, Manar, Salles, Mariana Vallim, Sharon, Dror, Simonelli, Francesca, Spital, Georg, Steehouwer, Marloes, Szaflik, Jacek P, Thompson, Jennifer A, Thuillier, Caroline, Tracewska, Anna M, van Zweeden, Martine, Vincent, Andrea L, Zanlonghi, Xavier, Liskova, Petra, Stoehr, Heidi, Roach, John N. De, Ayuso, Carmen, Roberts, Lisa, Weber, Bernhard H. F, Dhaenens, Claire-Marie, Cremers, Frans P. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Missing heritability in human diseases represents a major challenge, and this is particularly true for ABCA4-associated Stargardt disease (STGD1). We aimed to elucidate the genomic and transcriptomic variation in 1054 unsolved STGD and STGD-like probands. Methods Sequencing of the complete 128-kb ABCA4 gene was performed using single-molecule molecular inversion probes (smMIPs), based on a semiautomated and cost-effective method. Structural variants (SVs) were identified using relative read coverage analyses and putative splice defects were studied using in vitro assays. Results In 448 biallelic probands 14 known and 13 novel deep-intronic variants were found, resulting in pseudoexon (PE) insertions or exon elongations in 105 alleles. Intriguingly, intron 13 variants c.1938-621G>A and c.1938-514G>A resulted in dual PE insertions consisting of the same upstream, but different downstream PEs. The intron 44 variant c.6148-84A>T resulted in two PE insertions and flanking exon deletions. Eleven distinct large deletions were found, two of which contained small inverted segments. Uniparental isodisomy of chromosome 1 was identified in one proband. Conclusion Deep sequencing of ABCA4 and midigene-based splice assays allowed the identification of SVs and causal deep-intronic variants in 25% of biallelic STGD1 cases, which represents a model study that can be applied to other inherited diseases.
ISSN:1530-0366
1098-3600