The ESCAPE project : Energy-efficient Scalable Algorithms for Weather Prediction at Exascale

In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Müller, Andreas, Deconinck, Willem, Kühnlein, Christian, Mengaldo, Gianmarco, Lange, Michael, Wedi, Nils, Bauer, Peter, Smolarkiewicz, Piotr K, Diamantakis, Michail, Lock, Sarah-Jane, Hamrud, Mats, Saarinen, Sami, Mozdzynski, George, Thiemert, Daniel, Glinton, Michael, Bénard, Pierre, Voitus, Fabrice, Colavolpe, Charles, Marguinaud, Philippe, Zheng, Yongjun, Van Bever, Joris, Degrauwe, Daan, Smet, Geert, Termonia, Piet, Nielsen, Kristian P, Sass, Bent H, Poulsen, Jacob W, Berg, Per, Osuna, Carlos, Fuhrer, Oliver, Clement, Valentin, Baldauf, Michael, Gillard, Mike, Szmelter, Joanna, O'Brien, Enda, McKinstry, Alastair, Robinson, Oisín, Shukla, Parijat, Lysaght, Michael, Kulczewski, Michał, Ciznicki, Milosz, Piątek, Wojciech, Ciesielski, Sebastian, Błażewicz, Marek, Kurowski, Krzysztof, Procyk, Marcin, Spychala, Pawel, Bosak, Bartosz, Piotrowski, Zbigniew P, Wyszogrodzki, Andrzej, Raffin, Erwan, Mazauric, Cyril, Guibert, David, Douriez, Louis, Vigouroux, Xavier, Gray, Alan, Messmer, Peter, Macfaden, Alexander J, New, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the simulation of complex multi-scale flows arising in weather and climate modelling, one of the biggest challenges is to satisfy strict service requirements in terms of time to solution and to satisfy budgetary constraints in terms of energy to solution, without compromising the accuracy and stability of the application. These simulations require algorithms that minimise the energy footprint along with the time required to produce a solution, maintain the physically required level of accuracy, are numerically stable, and are resilient in case of hardware failure. The European Centre for Medium-Range Weather Forecasts (ECMWF) led the ESCAPE (Energy-efficient Scalable Algorithms for Weather Prediction at Exascale) project, funded by Horizon 2020 (H2020) under the FET-HPC (Future and Emerging Technologies in High Performance Computing) initiative. The goal of ESCAPE was to develop a sustainable strategy to evolve weather and climate prediction models to next-generation computing technologies. The project partners incorporate the expertise of leading European regional forecasting consortia, university research, experienced high-performance computing centres, and hardware vendors. This paper presents an overview of the ESCAPE strategy: (i) identify domain-specific key algorithmic motifs in weather prediction and climate models (which we term Weather & Climate Dwarfs), (ii) categorise them in terms of computational and communication patterns while (iii) adapting them to different hardware architectures with alternative programming models, (iv) analyse the challenges in optimising, and (v) find alternative algorithms for the same scheme. The participating weather prediction models are the following: IFS (Integrated Forecasting System); ALARO, a combination of AROME (Application de la Recherche a l'Operationnel a Meso-Echelle) and ALADIN (Aire Limitee Adaptation Dynamique Developpement International); and COSMO-EULAG, a combination of COSMO (Consortium for Small-scale Modeling) and EULAG (Eulerian and semi-Lagrangian fluid solver). For many of the weather and climate dwarfs ESCAPE provides prototype implementations on different hardware architectures (mainly Intel Skylake CPUs, NVIDIA GPUs, Intel Xeon Phi, Optalysys optical processor) with different programming models. The spectral transform dwarf represents a detailed example of the co-design cycle of an ESCAPE dwarf. The dwarf concept has proven to be extremely useful for the rapid prototyping of alternative
ISSN:1991-959X
1991-9603