Human decellularized dermal matrix seeded with adipose-derived stem cells enhances wound healing in a murine model : experimental study
Objective: Full-thickness cutaneous wounds treated with split-thickness skin grafts often result in unaesthetic and hypertrophic scars. Dermal substitutes are currently used together with skin grafts in a single treatment to reconstruct the dermal layer of the skin, resulting in improved quality of...
Gespeichert in:
Hauptverfasser: | , , , , , , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Objective: Full-thickness cutaneous wounds treated with split-thickness skin grafts often result in unaesthetic and hypertrophic scars. Dermal substitutes are currently used together with skin grafts in a single treatment to reconstruct the dermal layer of the skin, resulting in improved quality of scars. Adipose-derived stem cells (ASCs) have been described to enhance wound healing through structural and humoral mechanisms. In this study, we investigate the compatibility of xenogen-free isolated human ASCs seeded on human acellular dermal matrix (Glyaderm (R)) in a murine immunodeficient wound model.
Methods: Adipose tissue was obtained from abdominal liposuction, and stromal cells were isolated mechanically and cultured xenogen-free in autologous plasma-supplemented medium. Glyaderm (R) discs were seeded with EGFP-transduced ASCs, and implanted on 8 mm full-thickness dorsal wounds in an immunodeficient murine model, in comparison to standard Glyaderm (R) discs. Re-epithelialization rate, granulation thickness and vascularity were assessed by histology on days 3, 7 and 12. Statistical analysis was conducted using the Wilcoxon signed-rank test. EGFP-staining allowed for tracking of the ASCs in vivo. Hypoxic culture of the ASCs was performed to evaluate cytokine production.
Results: ASCs were characterized with flowcytometric analysis and differentiation assay. EGFP-tranduction resulted in 95% positive cells after sorting. Re-epithelialization in the ASC-seeded Glyaderm (R) side was significantly increased, resulting in complete wound healing in 12 days. Granulation thickness and vascularization were significantly increased during early wound healing. EGFP-ASCs could be retrieved by immunohistochemistry in the granulation tissue in early wound healing, and lining vascular structures in later stages.
Conclusion: Glyaderm (R) is an effective carrier to deliver ASCs in full-thickness wounds. ASC-seeded Glyaderm (R) significantly enhances wound healing compared to standard Glyaderm (R). The results of this study encourage clinical trials for treatment of full-thickness skin defects. Furthermore, xenogen-free isolation and autologous plasma-augmented culture expansion of ASCs, combined with the existing clinical experience with Glyaderm (R), aid in simplifying the necessary procedures in a GMP-laboratory setting. |
---|---|
ISSN: | 2049-0801 2049-0801 |