Dimensionless size scaling of intrinsic rotation in DIII-D

A dimensionless empirical scaling for intrinsic toroidal rotation is given: M-A similar to beta(N)rho*, where M-A is the toroidal velocity divided by the Alfven velocity, beta(N) is the usual normalized beta value, and rho* is the ion gyroradius divided by the minor radius. This scaling describes we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: deGrassie, JS, Solomon, WM, Rice, JE, Noterdaeme, Jean-Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dimensionless empirical scaling for intrinsic toroidal rotation is given: M-A similar to beta(N)rho*, where M-A is the toroidal velocity divided by the Alfven velocity, beta(N) is the usual normalized beta value, and rho* is the ion gyroradius divided by the minor radius. This scaling describes well experimental data from DIII-D and also some published data from C-Mod and JET. The velocity used in this scaling is in an outer location in minor radius, outside of the interior core and inside of the large gradient edge region in H-mode conditions. This scaling establishes the basic magnitude of the intrinsic toroidal rotation, and its relation to the rich variety of rotation profiles that can be realized for intrinsic conditions is discussed. This scaling has some similarities to existing dimensioned scalings, both the Rice scaling [J. E. Rice et al., Phys. Plasmas 7, 1825 (2000)] and the scaling of Parra et al. [Phys. Rev. Lett. 108, 095001 (2012)]. These relationships are described. Published by AIP Publishing.
ISSN:1070-664X
1089-7674