Fate of silver nanoparticles in constructed wetlands : a microcosm study
Nano-enabled materials are produced at growing volumes which increases the likelihood of nanoparticles being released into the environment. Constructed wetlands (CWs) are likely to receive wastewater containing nanoparticles leaching from products during usage. Therefore, we investigate the retentio...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nano-enabled materials are produced at growing volumes which increases the likelihood of nanoparticles being released into the environment. Constructed wetlands (CWs) are likely to receive wastewater containing nanoparticles leaching from products during usage. Therefore, we investigate the retention of silver nanoparticles (Ag-NPs) in microcosms simulating CWs treating domestic wastewater. The effects of aeration and organic matter content on the Ag-NP removal efficiencies are studied in particular. CWs remove most of the Ag (80-90%) and the largest fraction of Ag is found in/on the biofilm. Detailed electron microscopy analyses suggest that Ag-NPs are transformed into Ag2S in all microcosm experiments. The good correlation between total suspended solids (TSS) and the Ag concentration measured in the effluent indicates that Ag-NPs are bound to the solids in the effluent. Aeration of the microcosms does not affect the release of Ag-NPs from the systems but increasing organic matter leads to increased amounts of Ag passing the CWs, correlating with the increased release of TSS from the CWs. These results suggest that Ag-NPs are retained with the (suspended) solids in CWs and that the removal efficiency of TSS is an important factor determining the discharge of Ag-NPs from CWs. |
---|---|
ISSN: | 0049-6979 1573-2932 |