Effects of grain size distribution on the initial strain shear modulus of calcareous sand
The soil’s small strain shear modulus, Gmax or G0, is applied in dynamic behavior analyses and is correlated to other soil properties (density and void ratio) for predicting soil dynamic behavior under seismic loadings such as earthquakes, machinery or traffic vibrations. However, for calcareous san...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The soil’s small strain shear modulus, Gmax or G0, is applied in dynamic behavior analyses and is correlated to other soil properties (density and void ratio) for predicting soil dynamic behavior under seismic loadings such as earthquakes, machinery or traffic vibrations. However, for calcareous sands, selecting representative samples for the field conditions is difficult; therefore, almost all measured soil parameters (post-seismic properties) do not reflect exactly the soil state before seismic loading. In some cases of dynamic loading, a change in grain size distribution (GSD) of soils, especially for calcareous sands might occur. Moreover, many of these sand types behave differently from silica sands owing to their mineralogy, particle characterization, soil skeleton, and the continuous changing of particle size. For this reason, a series of isotropic consolidation tests in ranges of confining pressure from 25 to 300 kPa as well as bender element measurements on a calcareous sand and on a reference silica sand were performed in this study. The effects of differences in gradation and in the type of material on the soil’s small strain shear modulus, Gmax, are discussed. |
---|