Urban background noise mapping: the multiple-reflection correction term

Mapping of road traffic noise in urban areas according to standardized engineering calculation methods systematically results in an underestimation of noise levels at areas shielded from direct exposure to noise, such as inner yards. In most engineering methods, road traffic lanes are represented by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hornikx, Maarten, Forssén, Jens, Botteldooren, Dick, Van Renterghem, Timothy, Wei, Weigang, Ögren, Mikael, Salomons, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mapping of road traffic noise in urban areas according to standardized engineering calculation methods systematically results in an underestimation of noise levels at areas shielded from direct exposure to noise, such as inner yards. In most engineering methods, road traffic lanes are represented by point sources and noise levels are computed utilizing point-to-point propagation paths. For a better prediction of noise levels in shielded urban areas, an extension of engineering methods by an attenuation term Acan has been proposed, including multiple reflections of the urban environment both in the source and in the receiver area. The present work has two main contributions for the ease of computing A(can). Firstly, it is shown by numerical calculations that A(can) may be divided into independent source and receiver environment terms, A(s) and A(r). Based on an equivalent free field analogy, the distance dependence of these terms may moreover be expressed analytically. Secondly, an analytical expression is proposed to compute A(s) and A(r) for 3D configurations from using 2D configurations only. The expression includes dependence of the street width-to-height ratio, the difference in building heights and the percentage of facade openings in the horizontal plane. For the expression to be valid, the source should be separated from the receiver environment by at least four times the street width.
ISSN:1610-1928