An omega-result for Beurling generalized integers
We consider Beurling number systems with very well-behaved primes, in the sense that psi(x) = x + O(x(alpha)) for some alpha < 1/2. We investigate how small the error term in the asymptotic formula for the integer-counting function N(x) can be for such systems. In particular, we show that N(x) -...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider Beurling number systems with very well-behaved primes, in the sense that psi(x) = x + O(x(alpha)) for some alpha < 1/2. We investigate how small the error term in the asymptotic formula for the integer-counting function N(x) can be for such systems. In particular, we show that N(x) - rho x = ohm(root x e-(log x)beta ) for any beta > 2/3. |
---|---|
ISSN: | 1730-6264 0065-1036 |