Evaluation of corrosion impeding concretion layers formed on shipwreck steel in the Belgian North Sea

Steel shipwrecks buried along the Belgian and French North Sea coast have proven to show very low corrosion rates due to concretion. This work aims to provide an in-depth analysis of the formed concretion layers and gain a more complete understanding of the gradual deposition processes in the North...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Laureys, Aurélie, Richardson, Peter, Verhasselt, Katrijn, Chaves, Igor A, Melchers, Robert E, Van Den Bergh, Krista, Depover, Tom, Verbeken, Kim, Potters, Geert, De Baere, Kris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steel shipwrecks buried along the Belgian and French North Sea coast have proven to show very low corrosion rates due to concretion. This work aims to provide an in-depth analysis of the formed concretion layers and gain a more complete understanding of the gradual deposition processes in the North Sea. Detailed microstructural characterization by scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffraction of two different specimens demonstrates that the concretion includes a complex structure of multiple layers. Closest to the metal surface, a layer of 100% akaganeite is found. It forms from corrosion products exhibiting high Cl- ions concentrations at the metal surface. Next, other iron oxides, such as goethite, lepidocrocite, and magnetite, are observed. Then, layers that both contain corrosion products and compounds from the environment are present. These layers contain calcium carbonates (calcite and aragonite), calcium sulfate (gypsum), and quartz (sand). Moreover, due to a displacement of calcium by iron, an additional phase is formed consisting out of hard, dense siderite mixed into calcite. Finally, the surface of the concretion is covered by a biofilm.
ISSN:0010-9312
1938-159X