Gaussian almost primes in almost all narrow sectors
We show that almost all sectors of the disc \{z \in \mathbb{C}: |z|^2\leq X\} of area (\log X)^{15.1} contain products of exactly two Gaussian primes, and that almost all sectors of area (\log X)^{1 + \varepsilon} contain products of exactly three Gaussian primes. The argument is based on mean value...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2024-08, Vol.40 (4), p.1293-1350 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that almost all sectors of the disc \{z \in \mathbb{C}: |z|^2\leq X\} of area (\log X)^{15.1} contain products of exactly two Gaussian primes, and that almost all sectors of area (\log X)^{1 + \varepsilon} contain products of exactly three Gaussian primes. The argument is based on mean value theorems, large value estimates and pointwise bounds for Hecke character sums. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/1452 |