Developing a multi-institutional nomogram for assessing lung cancer risk in patients with 5-30mm pulmonary nodules: a retrospective analysis
Background The diagnosis of benign and malignant solitary pulmonary nodules based on personal experience has several limitations. Therefore, this study aims to establish a nomogram for the diagnosis of benign and malignant solitary pulmonary nodules using clinical information and computed tomography...
Gespeichert in:
Veröffentlicht in: | PeerJ (San Francisco, CA) CA), 2023-12, Vol.11, p.e16539 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background The diagnosis of benign and malignant solitary pulmonary nodules based on personal experience has several limitations. Therefore, this study aims to establish a nomogram for the diagnosis of benign and malignant solitary pulmonary nodules using clinical information and computed tomography (CT) results. Methods Retrospectively, we collected clinical and CT characteristics of 1,160 patients with pulmonary nodules in Guang'an People's Hospital and the hospital affiliated with North Sichuan Medical College between 2019 and 2021. Among these patients, data from 773 patients with pulmonary nodules were used as the training set. We used the least absolute shrinkage and selection operator (LASSO) to optimize clinical and imaging features and performed a multivariate logistic regression to identify features with independent predictive ability to develop the nomogram model. The area under the receiver operating characteristic curve (AUC), C-index, decision curve analysis, and calibration plot were used to evaluate the performance of the nomogram model in terms of predictive ability, discrimination, calibration, and clinical utility. Finally, data from 387 patients with pulmonary nodules were utilized for validation. Results In the training set, the predictors for the nomogram were gender, density of the nodule, nodule diameter, lobulation, calcification, vacuole, vascular convergence, bronchiole, and pleural traction, selected through LASSO and logistic regression analysis. The resulting model had a C-index of 0.842 (95% CI [0.812-0.872]) and AUCs of 0.842 (95% CI [0.812-0.872]). In the validation set, the C-index was 0.856 (95% CI [0.811-0.901]), and the AUCs were 0.844 (95% CI [0.797-0.891]). Results from the calibration curve and clinical decision curve analyses indicate that the nomogram has a high fit and clinical benefit in both the training and validation sets. Conclusion The establishment of a nomogram for predicting the benign or malignant diagnosis of solitary pulmonary nodules by this study has shown good efficacy. Such a nomogram may help to guide the diagnosis, follow-up, and treatment of patients. |
---|---|
ISSN: | 2167-8359 2167-8359 |
DOI: | 10.7717/peerj.16539 |