Cauchy’s surface area formula in the Heisenberg groups
We show an analogue of Cauchy's surface area formula for the Heisenberg groups \mathbb{H}_n for n\geq 1 , which states that the p-area of any compact hypersurface \Sigma in \mathbb{H}_n with its p-normal vector defined almost everywhere on \Sigma is the average of its projected p-areas onto the...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2023-03, Vol.39 (1), p.165-180 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; spa |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 1 |
container_start_page | 165 |
container_title | Revista matemática iberoamericana |
container_volume | 39 |
creator | Huang, Yen-Chang |
description | We show an analogue of Cauchy's surface area formula for the Heisenberg groups
\mathbb{H}_n
for
n\geq 1
, which states that the p-area of any compact hypersurface
\Sigma
in
\mathbb{H}_n
with its p-normal vector defined almost everywhere on
\Sigma
is the average of its projected p-areas onto the orthogonal complements of all p-normal vectors of the Pansu spheres (up to a constant). The formula provides a geometric interpretation of the p-areas defined by Cheng–Hwang–Malchiodi–Yang in
\mathbb{H}_1
and Cheng–Hwang– Yang in
\mathbb{H}_n
for
n\geq 2
. We also characterize the projected areas for rotationally symmetric domains in
\mathbb{H}_n
; namely, for any rotationally symmetric domain with boundary in
\mathbb{H}_n
, its projected p-area onto the orthogonal complement of any normal vector of the Pansu spheres is a constant, independent of the choice of the projected directions. |
doi_str_mv | 10.4171/RMI/1320 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_gale_infotracmisc_A808547349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A808547349</galeid><sourcerecordid>A808547349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2430-5ed6b7641ff979961bd8c2a29545d33bb39f20ba6e0f50a95d2ad4e8a4b0d1543</originalsourceid><addsrcrecordid>eNptkM1KAzEcxIMoWKvgIwS8eNn2n6_dzbEUtYWKIHoO-Wwj3d2SdA-9-Rq-nk_ilnoRZA4Dw2_mMAjdEphwUpHp6_NyShiFMzSilIkCSlKeoxFQwoohgEt0lfMHAOUAMEL1XPd2c_j-_Mo49ylo67FOXuPQpabfahxbvN94vPAx-9b4tMbr1PW7fI0ugt5mf_PrY_T--PA2XxSrl6flfLYqLOUMCuFdaaqSkxBkJWVJjKst1VQKLhxjxjAZKBhdeggCtBSOasd9rbkBRwRnY3R32l3rrVexDd0-advEbNWshlrwinE5UJN_qEHON9F2rQ9xyP8U7k8Fm7qckw9ql2Kj00ERUMcjVWqiOh7JfgDfaWRF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cauchy’s surface area formula in the Heisenberg groups</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Huang, Yen-Chang</creator><creatorcontrib>Huang, Yen-Chang</creatorcontrib><description>We show an analogue of Cauchy's surface area formula for the Heisenberg groups
\mathbb{H}_n
for
n\geq 1
, which states that the p-area of any compact hypersurface
\Sigma
in
\mathbb{H}_n
with its p-normal vector defined almost everywhere on
\Sigma
is the average of its projected p-areas onto the orthogonal complements of all p-normal vectors of the Pansu spheres (up to a constant). The formula provides a geometric interpretation of the p-areas defined by Cheng–Hwang–Malchiodi–Yang in
\mathbb{H}_1
and Cheng–Hwang– Yang in
\mathbb{H}_n
for
n\geq 2
. We also characterize the projected areas for rotationally symmetric domains in
\mathbb{H}_n
; namely, for any rotationally symmetric domain with boundary in
\mathbb{H}_n
, its projected p-area onto the orthogonal complement of any normal vector of the Pansu spheres is a constant, independent of the choice of the projected directions.</description><identifier>ISSN: 0213-2230</identifier><identifier>EISSN: 2235-0616</identifier><identifier>DOI: 10.4171/RMI/1320</identifier><language>eng ; spa</language><publisher>European Mathematical Society Publishing House</publisher><ispartof>Revista matemática iberoamericana, 2023-03, Vol.39 (1), p.165-180</ispartof><rights>COPYRIGHT 2023 European Mathematical Society Publishing House</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2430-5ed6b7641ff979961bd8c2a29545d33bb39f20ba6e0f50a95d2ad4e8a4b0d1543</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Yen-Chang</creatorcontrib><title>Cauchy’s surface area formula in the Heisenberg groups</title><title>Revista matemática iberoamericana</title><description>We show an analogue of Cauchy's surface area formula for the Heisenberg groups
\mathbb{H}_n
for
n\geq 1
, which states that the p-area of any compact hypersurface
\Sigma
in
\mathbb{H}_n
with its p-normal vector defined almost everywhere on
\Sigma
is the average of its projected p-areas onto the orthogonal complements of all p-normal vectors of the Pansu spheres (up to a constant). The formula provides a geometric interpretation of the p-areas defined by Cheng–Hwang–Malchiodi–Yang in
\mathbb{H}_1
and Cheng–Hwang– Yang in
\mathbb{H}_n
for
n\geq 2
. We also characterize the projected areas for rotationally symmetric domains in
\mathbb{H}_n
; namely, for any rotationally symmetric domain with boundary in
\mathbb{H}_n
, its projected p-area onto the orthogonal complement of any normal vector of the Pansu spheres is a constant, independent of the choice of the projected directions.</description><issn>0213-2230</issn><issn>2235-0616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkM1KAzEcxIMoWKvgIwS8eNn2n6_dzbEUtYWKIHoO-Wwj3d2SdA-9-Rq-nk_ilnoRZA4Dw2_mMAjdEphwUpHp6_NyShiFMzSilIkCSlKeoxFQwoohgEt0lfMHAOUAMEL1XPd2c_j-_Mo49ylo67FOXuPQpabfahxbvN94vPAx-9b4tMbr1PW7fI0ugt5mf_PrY_T--PA2XxSrl6flfLYqLOUMCuFdaaqSkxBkJWVJjKst1VQKLhxjxjAZKBhdeggCtBSOasd9rbkBRwRnY3R32l3rrVexDd0-advEbNWshlrwinE5UJN_qEHON9F2rQ9xyP8U7k8Fm7qckw9ql2Kj00ERUMcjVWqiOh7JfgDfaWRF</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Huang, Yen-Chang</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope><scope>INF</scope></search><sort><creationdate>20230301</creationdate><title>Cauchy’s surface area formula in the Heisenberg groups</title><author>Huang, Yen-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2430-5ed6b7641ff979961bd8c2a29545d33bb39f20ba6e0f50a95d2ad4e8a4b0d1543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; spa</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yen-Chang</creatorcontrib><collection>CrossRef</collection><collection>Gale OneFile: Informe Academico</collection><jtitle>Revista matemática iberoamericana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yen-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cauchy’s surface area formula in the Heisenberg groups</atitle><jtitle>Revista matemática iberoamericana</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>165</spage><epage>180</epage><pages>165-180</pages><issn>0213-2230</issn><eissn>2235-0616</eissn><abstract>We show an analogue of Cauchy's surface area formula for the Heisenberg groups
\mathbb{H}_n
for
n\geq 1
, which states that the p-area of any compact hypersurface
\Sigma
in
\mathbb{H}_n
with its p-normal vector defined almost everywhere on
\Sigma
is the average of its projected p-areas onto the orthogonal complements of all p-normal vectors of the Pansu spheres (up to a constant). The formula provides a geometric interpretation of the p-areas defined by Cheng–Hwang–Malchiodi–Yang in
\mathbb{H}_1
and Cheng–Hwang– Yang in
\mathbb{H}_n
for
n\geq 2
. We also characterize the projected areas for rotationally symmetric domains in
\mathbb{H}_n
; namely, for any rotationally symmetric domain with boundary in
\mathbb{H}_n
, its projected p-area onto the orthogonal complement of any normal vector of the Pansu spheres is a constant, independent of the choice of the projected directions.</abstract><pub>European Mathematical Society Publishing House</pub><doi>10.4171/RMI/1320</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0213-2230 |
ispartof | Revista matemática iberoamericana, 2023-03, Vol.39 (1), p.165-180 |
issn | 0213-2230 2235-0616 |
language | eng ; spa |
recordid | cdi_gale_infotracmisc_A808547349 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Cauchy’s surface area formula in the Heisenberg groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A53%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cauchy%E2%80%99s%20surface%20area%20formula%20in%20the%20Heisenberg%20groups&rft.jtitle=Revista%20matem%C3%A1tica%20iberoamericana&rft.au=Huang,%20Yen-Chang&rft.date=2023-03-01&rft.volume=39&rft.issue=1&rft.spage=165&rft.epage=180&rft.pages=165-180&rft.issn=0213-2230&rft.eissn=2235-0616&rft_id=info:doi/10.4171/RMI/1320&rft_dat=%3Cgale_cross%3EA808547349%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A808547349&rfr_iscdi=true |