Cauchy’s surface area formula in the Heisenberg groups
We show an analogue of Cauchy's surface area formula for the Heisenberg groups \mathbb{H}_n for n\geq 1 , which states that the p-area of any compact hypersurface \Sigma in \mathbb{H}_n with its p-normal vector defined almost everywhere on \Sigma is the average of its projected p-areas onto the...
Gespeichert in:
Veröffentlicht in: | Revista matemática iberoamericana 2023-03, Vol.39 (1), p.165-180 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng ; spa |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show an analogue of Cauchy's surface area formula for the Heisenberg groups
\mathbb{H}_n
for
n\geq 1
, which states that the p-area of any compact hypersurface
\Sigma
in
\mathbb{H}_n
with its p-normal vector defined almost everywhere on
\Sigma
is the average of its projected p-areas onto the orthogonal complements of all p-normal vectors of the Pansu spheres (up to a constant). The formula provides a geometric interpretation of the p-areas defined by Cheng–Hwang–Malchiodi–Yang in
\mathbb{H}_1
and Cheng–Hwang– Yang in
\mathbb{H}_n
for
n\geq 2
. We also characterize the projected areas for rotationally symmetric domains in
\mathbb{H}_n
; namely, for any rotationally symmetric domain with boundary in
\mathbb{H}_n
, its projected p-area onto the orthogonal complement of any normal vector of the Pansu spheres is a constant, independent of the choice of the projected directions. |
---|---|
ISSN: | 0213-2230 2235-0616 |
DOI: | 10.4171/RMI/1320 |