Microscopic and Color Changes in Direct Dental Restorative Composite Resins upon Immersion in Beverages: Characterization by Scanning Electron Microscopy

This study aimed to evaluate the staining sensitivity and surface changes in recent composite resins (Herculite Ultra XRV (Kerr, Bolzano, Italy), G-ænial A’CHORD (GC Corp, Tokyo, Japan), and Omnichroma (Yamaguchi, Japan)) when exposed to common beverages such as coffee, red wine, and Coca-Cola. A to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedicines 2024-08, Vol.12 (8)
Hauptverfasser: Hajdu, Adrian Ioan, Dumitrescu, Ramona, Balean, Octavia, Jumanca, Daniela, Sava-Rosianu, Ruxandra, Floare, Lucian, Bolchis, Vanessa, Vlase, Titus, Galuscan, Atena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to evaluate the staining sensitivity and surface changes in recent composite resins (Herculite Ultra XRV (Kerr, Bolzano, Italy), G-ænial A’CHORD (GC Corp, Tokyo, Japan), and Omnichroma (Yamaguchi, Japan)) when exposed to common beverages such as coffee, red wine, and Coca-Cola. A total of 60 disk-shaped specimens were prepared from three different resin composites (n = 20 each). The specimens were exposed to coffee, red wine, and Coca-Cola for 10 days. Color measurements were taken using a spectrophotometer, and surface morphology and elemental composition were analyzed using SEM and EDS. The SEM and EDS analyses revealed significant changes in the surface morphology and elemental composition of the composites after immersion. Coffee and wine caused significant surface degradation, whereas Coca-Cola resulted in the greatest degree of surface and elemental variations. Color changes (ΔE = 4 ± 0.52) were most notable in Coca-Cola for Herculite Ultra XRV (Kerr, Italy), in red wine for G-ænial A’CHORD (GC Corp, Japan) (ΔE = 12.51 ± 0.38), and in coffee for Omnichroma (Yamaguchi, Japan) (ΔE = 10.85 ± 1.03). The tested beverages significantly affected both the surface condition and the chemical composition of the resin at the surface level. These findings highlight the importance of understanding the effects of common dietary beverages on dental composites.
ISSN:2227-9059
2227-9059
DOI:10.3390/biomedicines12081740