Molecular Mechanisms of Chlorophyll Deficiency in IIlex/I × Iattenuata/I ‘Sunny Foster’ Mutant

Ilex × attenuata ‘Sunny Foster’ represents a yellow leaf mutant originating from I. × attenuata ‘Foster#2’, a popular ornamental woody cultivar. However, the molecular mechanisms underlying this leaf color mutation remain unclear. Using a comprehensive approach encompassing cytological, physiologica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plants (Basel) 2024-05, Vol.13 (10)
Hauptverfasser: Zou, Yiping, Huang, Yajian, Zhang, Donglin, Chen, Hong, Liang, Youwang, Hao, Mingzhuo, Yin, Yunlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ilex × attenuata ‘Sunny Foster’ represents a yellow leaf mutant originating from I. × attenuata ‘Foster#2’, a popular ornamental woody cultivar. However, the molecular mechanisms underlying this leaf color mutation remain unclear. Using a comprehensive approach encompassing cytological, physiological, and transcriptomic methodologies, notable distinctions were discerned between the mutant specimen and its wild type. The mutant phenotype displayed aberrant chloroplast morphology, diminished chlorophyll content, heightened carotenoid/chlorophyll ratios, and a decelerated rate of plant development. Transcriptome analysis identified differentially expressed genes (DEGs) related to chlorophyll metabolism, carotenoid biosynthesis and photosynthesis. The up-regulation of CHLD and CHLI subunits leads to decreased magnesium chelatase activity, while the up-regulation of COX10 increases heme biosynthesis—both impair chlorophyll synthesis. Conversely, the down-regulation of HEMD hindered chlorophyll synthesis, and the up-regulation of SGR enhanced chlorophyll degradation, resulting in reduced chlorophyll content. Additionally, genes linked to carotenoid biosynthesis, flavonoid metabolism, and photosynthesis were significantly down-regulated. We also identified 311 putative differentially expressed transcription factors, including bHLH s and GLK s. These findings shed light on the molecular mechanisms underlying leaf color mutation in I. × attenuata ‘Sunny Foster’ and provide a substantial gene reservoir for enhancing leaf color through breeding techniques.
ISSN:2223-7747
2223-7747
DOI:10.3390/plants13101284