IPannonibacter anstelovis/I sp. nov. Isolated from Two Cases of Bloodstream Infections in Paediatric Patients

This study describes two cases of bacteraemia sustained by a new putative Pannonibacter species isolated at the U.O.C. of Microbiology and Virology of the Policlinico of Bari (Bari, Italy) from the blood cultures of two patients admitted to the Paediatric Oncohaematology Unit. Pannonibacter spp. is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2024-04, Vol.12 (4)
Hauptverfasser: Castellana, Stefano, De Laurentiis, Vittoriana, Bianco, Angelica, Del Sambro, Laura, Grassi, Massimo, De Leonardis, Francesco, Derobe, De Carlo, Carmen, Sparapano, Eleonora, Mosca, Adriana, Stolfa, Stefania, Ronga, Luigi, Santacroce, Luigi, Chironna, Maria, Parisi, Michela, Capozzi, Loredana, Parisi, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study describes two cases of bacteraemia sustained by a new putative Pannonibacter species isolated at the U.O.C. of Microbiology and Virology of the Policlinico of Bari (Bari, Italy) from the blood cultures of two patients admitted to the Paediatric Oncohaematology Unit. Pannonibacter spp. is an environmental Gram-negative bacterium not commonly associated with nosocomial infections. Species identification was performed using Sanger sequencing of the 16S rRNA gene and Whole-Genome Sequencing (WGS) for both strains. Genomic analyses for the two isolates, BLAST similarity search, and phylogeny for the 16S rDNA sequences lead to an assignment to the species Pannonibacter phragmitetus. However, by performing ANIb, ANIm, tetranucleotide correlation, and DNA-DNA digital hybridization, analyses of the two draft genomes showed that they were very different from those of the species P. phragmitetus. MALDI-TOF analysis, assessment of antimicrobial susceptibility by E-test method, and Analytical Profile Index (API) tests were also performed. This result highlights how environmental bacterial species can easily adapt to the human host and, especially in nosocomial environments, also gain pathogenic potential through antimicrobial resistance.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms12040799