Impacts of Arbuscular Mycorrhizal Fungi on Metabolites of an Invasive Weed IWedelia trilobata/I
The invasive plant Wedelia trilobata benefits in various aspects, such as nutrient absorption and environmental adaptability, by establishing a close symbiotic relationship with arbuscular mycorrhizal fungi (AMF). However, our understanding of whether AMF can benefit W. trilobata by influencing its...
Gespeichert in:
Veröffentlicht in: | Microorganisms (Basel) 2024-04, Vol.12 (4) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The invasive plant Wedelia trilobata benefits in various aspects, such as nutrient absorption and environmental adaptability, by establishing a close symbiotic relationship with arbuscular mycorrhizal fungi (AMF). However, our understanding of whether AMF can benefit W. trilobata by influencing its metabolic profile remains limited. In this study, Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was conducted to analyze the metabolites of W. trilobata under AMF inoculation. Metabolomic analysis identified 119 differentially expressed metabolites (DEMs) between the groups inoculated with AMF and those not inoculated with AMF. Compared to plants with no AMF inoculation, plants inoculated with AMF showed upregulation in the relative expression of 69 metabolites and downregulation in the relative expression of 50 metabolites. AMF significantly increased levels of various primary and secondary metabolites in plants, including amino acids, organic acids, plant hormones, flavonoids, and others, with amino acids being the most abundant among the identified substances. The identified DEMs mapped 53 metabolic pathways, with 7 pathways strongly influenced by AMF, particularly the phenylalanine metabolism pathway. Moreover, we also observed a high colonization level of AMF in the roots of W. trilobata, significantly promoting the shoot growth of this plant. These changes in metabolites and metabolic pathways significantly affect multiple physiological and biochemical processes in plants, such as free radical scavenging, osmotic regulation, cell structure stability, and material synthesis. In summary, AMF reprogrammed the metabolic pathways of W. trilobata, leading to changes in both primary and secondary metabolomes, thereby benefiting the growth of W. trilobata and enhancing its ability to respond to various biotic and abiotic stressors. These findings elucidate the molecular regulatory role of AMF in the invasive plant W. trilobata and provide new insights into the study of its competitive and stress resistance mechanisms. |
---|---|
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms12040701 |